These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 6715389)
1. An estimation of center of gravity from force platform data. Shimba T J Biomech; 1984; 17(1):53-60. PubMed ID: 6715389 [TBL] [Abstract][Full Text] [Related]
2. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent. Singhal K; Kim J; Casebolt J; Lee S; Han KH; Kwon YH Hum Mov Sci; 2015 Jun; 41():230-9. PubMed ID: 25846952 [TBL] [Abstract][Full Text] [Related]
3. Mechanics of running under simulated low gravity. He JP; Kram R; McMahon TA J Appl Physiol (1985); 1991 Sep; 71(3):863-70. PubMed ID: 1757322 [TBL] [Abstract][Full Text] [Related]
4. The effect of gravity on the ligaments of the medial malleolus and its pronating effect on the tarsus. Bender G Arch Orthop Trauma Surg (1978); 1978 Feb; 91(1):1-2. PubMed ID: 655811 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. Bouisset S; Zattara M J Biomech; 1987; 20(8):735-42. PubMed ID: 3654672 [TBL] [Abstract][Full Text] [Related]
6. Compensation for inertial and gravity effects in a moving force platform. Hnat SK; van Basten BJH; van den Bogert AJ J Biomech; 2018 Jun; 75():96-101. PubMed ID: 29789150 [TBL] [Abstract][Full Text] [Related]
7. A technique for the determination of center of gravity and rolling resistance for tilt-seat wheelchairs. Lemaire ED; Lamontagne M; Barclay HW; John T; Martel G J Rehabil Res Dev; 1991; 28(3):51-8. PubMed ID: 1880750 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional analysis of the angular momentum of a pole-vaulter. Morlier J; Cid M J Biomech; 1996 Aug; 29(8):1085-90. PubMed ID: 8817376 [TBL] [Abstract][Full Text] [Related]
9. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running. Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885 [TBL] [Abstract][Full Text] [Related]
10. Influence of the direction of the cable force and of the radius of the hammer path on speed fluctuations during hammer throwing. Dapena J; Feltner ME J Biomech; 1989; 22(6-7):565-75. PubMed ID: 2808441 [TBL] [Abstract][Full Text] [Related]
11. A technique for determining the path of the whole body center of gravity. Johnson RE Res Q; 1977 Mar; 48(1):222-32. PubMed ID: 266244 [No Abstract] [Full Text] [Related]
12. Theoretical and experimental dissection of gravity-dependent mechanical orientation in gravitactic microorganisms. Mogami Y; Ishii J; Baba SA Biol Bull; 2001 Aug; 201(1):26-33. PubMed ID: 11526060 [TBL] [Abstract][Full Text] [Related]
13. Heel-off perturbation during gait initiation: biomechanical analysis using triaxial accelerometry and a force plate. Brenière Y; Dietrich G J Biomech; 1992 Feb; 25(2):121-7. PubMed ID: 1733988 [TBL] [Abstract][Full Text] [Related]
14. The ground reaction force pattern from the hindlimb of the horse simulated by a spring model. van Gurp M; Schamhardt HC; Crowe A Acta Anat (Basel); 1987; 129(1):31-3. PubMed ID: 3618096 [TBL] [Abstract][Full Text] [Related]
15. The role of gravity in human walking: pendular energy exchange, external work and optimal speed. Cavagna GA; Willems PA; Heglund NC J Physiol; 2000 Nov; 528(Pt 3):657-68. PubMed ID: 11060138 [TBL] [Abstract][Full Text] [Related]
16. Living in a physical world VI. Gravity and life in the air. Vogel S J Biosci; 2006 Mar; 31(1):13-25. PubMed ID: 16595871 [No Abstract] [Full Text] [Related]
17. Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. Griffin TM; Tolani NA; Kram R J Appl Physiol (1985); 1999 Jan; 86(1):383-90. PubMed ID: 9887153 [TBL] [Abstract][Full Text] [Related]
18. A force-indentation relationship for gymnastic mats. Gatto F; Swannell P; Neal R J Biomech Eng; 1992 Aug; 114(3):338-45. PubMed ID: 1522728 [TBL] [Abstract][Full Text] [Related]
20. A kinematics-based model for the settling of gravity-driven arbitrary-shaped particles on a surface. Daghooghi M; Borazjani I PLoS One; 2021; 16(2):e0243716. PubMed ID: 33561163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]