These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 6716287)
1. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilation in the dog. Drake-Holland AJ; Laird JD; Noble MI; Spaan JA; Vergroesen I J Physiol; 1984 Mar; 348():285-99. PubMed ID: 6716287 [TBL] [Abstract][Full Text] [Related]
2. Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Dole WP; Nuno DW Circ Res; 1986 Aug; 59(2):202-15. PubMed ID: 3742744 [TBL] [Abstract][Full Text] [Related]
3. Role of myocardial oxygen and carbon dioxide in coronary autoregulation. Broten TP; Feigl EO Am J Physiol; 1992 Apr; 262(4 Pt 2):H1231-7. PubMed ID: 1566905 [TBL] [Abstract][Full Text] [Related]
4. K+ATP channels and adenosine are not necessary for coronary autoregulation. Stepp DW; Kroll K; Feigl EO Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819 [TBL] [Abstract][Full Text] [Related]
5. Mathematical analysis of coronary autoregulation and vascular reserve in closed-loop circulation. Barnea O Comput Biomed Res; 1994 Aug; 27(4):263-75. PubMed ID: 7956127 [TBL] [Abstract][Full Text] [Related]
6. Dynamics of myocardial oxygen consumption and coronary vascular resistance. Belloni FL; Sparks HV Am J Physiol; 1977 Jul; 233(1):H34-43. PubMed ID: 879334 [TBL] [Abstract][Full Text] [Related]
7. Increases in coronary vascular resistance related to high arterial oxygen tension in dogs. Ishikawa K; Kanamasa K; Yamakado T; Kohashi Y; Kato A; Otani S; Hayashi T; Katori R Jpn Circ J; 1980 Sep; 44(9):749-54. PubMed ID: 7411838 [TBL] [Abstract][Full Text] [Related]
8. Local metabolic hypothesis is not sufficient to explain coronary autoregulatory behavior. Kiel AM; Goodwill AG; Baker HE; Dick GM; Tune JD Basic Res Cardiol; 2018 Aug; 113(5):33. PubMed ID: 30073416 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of coronary adjustment to a change in heart rate in the anaesthetized goat. Dankelman J; Spaan JA; Stassen HG; Vergroesen I J Physiol; 1989 Jan; 408():295-312. PubMed ID: 2778731 [TBL] [Abstract][Full Text] [Related]
10. Coronary sinus venoarterial CO2 difference in different hemodynamic states. Vretzakis G; Ferdi E; Papaziogas B; Dragoumanis C; Pneumatikos J; Tsangaris I; Tsakiridis K; Konstantinou F Acta Anaesthesiol Belg; 2004; 55(3):221-7. PubMed ID: 15515299 [TBL] [Abstract][Full Text] [Related]
11. An appreciation of the coronary circulation. Sethna DH; Moffitt EA Anesth Analg; 1986 Mar; 65(3):294-305. PubMed ID: 3513666 [TBL] [Abstract][Full Text] [Related]
12. Adaptive responses of coronary circulation and myocardium to chronic reduction in perfusion pressure and flow. Mills I; Fallon JT; Wrenn D; Sasken H; Gray W; Bier J; Levine D; Berman S; Gilson M; Gewirtz H Am J Physiol; 1994 Feb; 266(2 Pt 2):H447-57. PubMed ID: 8141345 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of attenuated pressure-flow autoregulation in right coronary circulation of dogs. Yonekura S; Watanabe N; Caffrey JL; Gaugl JF; Downey HF Circ Res; 1987 Jan; 60(1):133-41. PubMed ID: 3568284 [TBL] [Abstract][Full Text] [Related]
14. Role of K+ATP channels in local metabolic coronary vasodilation. Richmond KN; Tune JD; Gorman MW; Feigl EO Am J Physiol; 1999 Dec; 277(6):H2115-23. PubMed ID: 10600828 [TBL] [Abstract][Full Text] [Related]
15. Can a single vasodilator be responsible for both coronary autoregulation and metabolic vasodilation? Laird JD; Breuls PN; van der Meer P; Spaan JA Basic Res Cardiol; 1981; 76(4):354-8. PubMed ID: 7283936 [TBL] [Abstract][Full Text] [Related]
16. [Characteristics of reaction of the coronary vessels and metabolism of the myocardium in changing over from high to low frequency electric stimulation of the heart]. Trubetskoĭ AV; Lysenko LT Kardiologiia; 1975 Mar; 15(3):76-81. PubMed ID: 1142614 [TBL] [Abstract][Full Text] [Related]
18. [Effect of changes in CO2 and O2 tension in circulating blood on coronary vascular resistance and myocardial oxygen consumption in the biological preservation of the heart]. Barinov EF Patol Fiziol Eksp Ter; 1981; (4):54-7. PubMed ID: 6793988 [No Abstract] [Full Text] [Related]
19. Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Abel RM; Reis RL Circ Res; 1970 Dec; 27(6):961-71. PubMed ID: 4992167 [No Abstract] [Full Text] [Related]
20. Effects of cardiac contraction on segmental coronary resistances and collateral perfusion. Heusch G; Yoshimoto N Int J Microcirc Clin Exp; 1983; 2(2):131-41. PubMed ID: 6678843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]