These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6716486)

  • 1. Apparent co-operativity for highly concentrated Michaelian and allosteric enzymes.
    Laurent M; Kellershohn N
    J Mol Biol; 1984 Apr; 174(3):543-55. PubMed ID: 6716486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of apparent co-operativity in a simple random non-equilibrium enzyme--substrate--modifier mechanism. Comparison with equilibrium allosteric models.
    Whitehead EP; Egmond MR
    Biochem J; 1979 Feb; 177(2):631-9. PubMed ID: 435256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic co-operativity of monomeric mnemonical enzymes. The significance of the kinetic Hill coefficient.
    Ricard J; Noat G
    Eur J Biochem; 1985 Nov; 152(3):557-64. PubMed ID: 4054121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-operativity in monomeric enzymes.
    Cornish-Bowden A; Cárdenas ML
    J Theor Biol; 1987 Jan; 124(1):1-23. PubMed ID: 3309473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigorous determination of the Hill coefficient of non-Michaelian substrate-inhibited enzymes.
    Bounias M
    Biochem Int; 1988 Jul; 17(1):147-54. PubMed ID: 3190712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic control of immobilized enzymes. Kinetics of acid phosphatase bound to plant cell walls.
    Ricard J; Noat G; Crasnier M; Job D
    Biochem J; 1981 May; 195(2):357-67. PubMed ID: 7316956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic manifestations of allosteric interactions in models of regulatory enzymes with "indirect" co-operativity.
    Kurganov BI; Kagan ZS; Dorozhko AI; Yakovlev VA
    J Theor Biol; 1974 Sep; 47(1):1-41. PubMed ID: 4459575
    [No Abstract]   [Full Text] [Related]  

  • 9. A model for the allosteric regulation of pH-sensitive enzymes.
    Shindler JS; Tipton KF
    Biochem J; 1977 Nov; 167(2):479-82. PubMed ID: 23113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of positive and negative co-operativity with allosteric enzymes and the interpretation of sigmoid curves and non-linear double reciprocal plots for the MWC and KNF models.
    Bardsley WG; Waight RD
    J Theor Biol; 1978 Jan; 70(2):135-56. PubMed ID: 633912
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification and regulatory properties of phosphoribulokinase from Hydrogenomonas eutropha H 16.
    Abdelal AT; Schlegel HG
    Biochem J; 1974 Jun; 139(3):481-9. PubMed ID: 4369092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of progress curves for a highly concentrated Michaelian enzyme in the presence or absence of product inhibition.
    Kellershohn N; Laurent M
    Biochem J; 1985 Oct; 231(1):65-74. PubMed ID: 4062893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The graphical diagnosis of positive and negative co-operativity and the factorability of the allosteric-binding polynomial [proceedings].
    Bardsley WG
    Biochem Soc Trans; 1977; 5(3):753-6. PubMed ID: 902907
    [No Abstract]   [Full Text] [Related]  

  • 14. Patterns of apparent co-operativity of the steady-state of a simple non-equilibrium random substrate-modifier mechanism [proceedings].
    Whitehead EP; Egmond MR
    Biochem Soc Trans; 1977; 5(3):789-90. PubMed ID: 902915
    [No Abstract]   [Full Text] [Related]  

  • 15. Theoretical analysis of the consequences of cyclic nucleotide phosphodiesterase negative co-operativity. Amplification and positive co-operativity of cyclic AMP accumulation.
    Erneux C; Boeynaems JM; Dumont JE
    Biochem J; 1980 Oct; 192(1):241-6. PubMed ID: 6272696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-operativity and enzymatic activity in polymer-activated enzymes. A one-dimensional piggy-back binding model and its application to the DNA-dependent ATPase of DNA gyrase.
    Chen Y; Maxwell A; Westerhoff HV
    J Mol Biol; 1986 Jul; 190(2):201-14. PubMed ID: 3025451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
    Kumar A; Chatterjee S; Nandi M; Dua A
    J Chem Phys; 2016 Aug; 145(8):085103. PubMed ID: 27586952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the generality of Michaelian kinetics.
    Barel I; Brown FL
    J Chem Phys; 2017 Jan; 146(1):014101. PubMed ID: 28063450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-operativity and the methods of plotting binding and steady-state kinetic data.
    Whitehead EP
    Biochem J; 1978 May; 171(2):501-4. PubMed ID: 656060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects.
    Tricot C; Villeret V; Sainz G; Dideberg O; Stalon V
    J Mol Biol; 1998 Oct; 283(3):695-704. PubMed ID: 9784377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.