These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 6716940)

  • 1. [Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight].
    Stupakov GP; Kazeĭkin VS; Kozlovskiĭ AP; Korolev VV
    Kosm Biol Aviakosm Med; 1984; 18(2):33-7. PubMed ID: 6716940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of weightlessness on amphibians. The skeleton and mineral metabolism].
    Besova NV; Savel'ev SV; Chernikov VP
    Biull Eksp Biol Med; 1993 Jul; 116(7):90-2. PubMed ID: 7691232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Histomorphometric analysis of the bones of rats on board the Kosmos 1667 biosatellite].
    Kaplanskiĭ AS; Durnova GN; Sakharova ZF; Il'ina-Kakueva EI
    Kosm Biol Aviakosm Med; 1987; 21(5):25-31. PubMed ID: 3695333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characteristics of bone tissue of rats after flight aboard biosputnik Kosmos-1129].
    Rogacheva IV; Stupakov GP; Volozhin AI; Pavlova MN; Poliakov AN
    Kosm Biol Aviakosm Med; 1984; 18(5):39-44. PubMed ID: 6513471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [General patterns of bone atrophy in the absence of a weight load on the skeleton].
    Stupakov GP; Kazeĭkin VS; Volozhin AI
    Kosm Biol Aviakosm Med; 1983; 17(3):36-45. PubMed ID: 6876716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bone mineral density in cosmonauts after flights lasting 4.5-6 months on the Mir orbital station].
    Oganov VS; Grigor'ev AI; Voronin LI; Rakhmanov AS; Bakulin AV; Schneider VS; LeBlanc AD
    Aviakosm Ekolog Med; 1992; 26(5-6):20-4. PubMed ID: 1307030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical results of Salyut-6 manned space flights.
    Vorobyov EI; Gazenko OG; Genin AM; Egorov AD
    Aviat Space Environ Med; 1983 Dec; 54(12 Pt 2):S31-40. PubMed ID: 6661132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dynamics of the orthostatic tolerance of cosmonauts after flights lasting from 2 to 63 days].
    Kalinichenko VV
    Kosm Biol Aviakosm Med; 1977; 11(3):31-7. PubMed ID: 875350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions].
    Oganov VS; Bogomolov VV; Bakulin AV; Novikov VE; Kabitskaia OE; Murashko LM; Morgun VV; Kasparskiĭ RR
    Fiziol Cheloveka; 2010; 36(3):39-47. PubMed ID: 20586301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Basic results of an experiment with mammals on the Kosmos-782 biosatellite].
    Gazenko OG; Genin AM; Il'in EA; Portugalov VV; Serova LV
    Kosm Biol Aviakosm Med; 1978; 12(6):43-9. PubMed ID: 713475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in calcium homeostasis and bone during actual and simulated space flight.
    Wronski TJ; Morey ER
    Med Sci Sports Exerc; 1983; 15(5):410-4. PubMed ID: 6645871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of simulated weightlessness on calcium metabolism and the condition of bone tissue in experimental animals].
    Morukov BV; Orlov OI; Belakovskiĭ MS; Kazeĭkin VS; Zaĭchik VE; Shvets VN; Tumanova IIu
    Kosm Biol Aviakosm Med; 1990; 24(2):31-4. PubMed ID: 2366501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of long space flights on amino acid metabolism].
    Ushakov AS; Vlasova TF; Miroshnikova EB; Mikhaĭlov VM; Biriukov EN
    Kosm Biol Aviakosm Med; 1983; 17(1):10-5. PubMed ID: 6682464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [State of the microscopic and crystalline structures, the microhardness and mineral saturation of human bone tissue after prolonged space flight].
    Gazenko OG; Prokhonchukov AA; Panikarovskiĭ VV; Tigranian RA; Kolesnik AG
    Kosm Biol Aviakosm Med; 1977; 11(3):11-20. PubMed ID: 875347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of weightlessness on the skeletal development of the rat fetus].
    Denisova LA
    Kosm Biol Aviakosm Med; 1986; 20(4):60-3. PubMed ID: 3762055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Low-gravitational changes in the bone system].
    Volozhin AI; Stupakov GP; Kazeĭkin VS
    Kosm Biol Aviakosm Med; 1988; 22(4):4-13. PubMed ID: 3066979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modern analysis of bone loss mechanisms in microgravity.
    Oganov VS
    J Gravit Physiol; 2004 Jul; 11(2):P143-6. PubMed ID: 16237819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Secondary osteoporosis UPDATE. Bone loss due to bed rest and human space flight study].
    Ohshima H
    Clin Calcium; 2010 May; 20(5):709-16. PubMed ID: 20445282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study of the effect of weightlessness and artificial gravity on the density, ash, calcium, and phosphorus content of calcified tissues].
    Prokhonchukov AA; Komissarova NA; Zhizhina NA; Volozhin AI
    Kosm Biol Aviakosm Med; 1980; 14(4):23-6. PubMed ID: 7421095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of the factors of prolonged space flight on the state of the skeleton of tortoises].
    Stupakov GP; Volozhin AI; Korzhen'iants VA; Iagodovskiĭ VS; Poliakov AN
    Patol Fiziol Eksp Ter; 1979; (6):9-14. PubMed ID: 542341
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.