These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Wanders RJ; Groen AK; Van Roermund CW; Tager JM Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353 [TBL] [Abstract][Full Text] [Related]
3. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria. Schild L; Gellerich FN Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667 [TBL] [Abstract][Full Text] [Related]
4. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Gellerich FN; Bohnensack R; Kunz W Biochim Biophys Acta; 1983 Feb; 722(2):381-91. PubMed ID: 6301555 [TBL] [Abstract][Full Text] [Related]
5. Rate control of phosphorylation-coupled respiration by rat liver mitochondria. Davis EJ; Davis-Van Thienen WI Arch Biochem Biophys; 1984 Sep; 233(2):573-81. PubMed ID: 6486800 [TBL] [Abstract][Full Text] [Related]
6. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation. Wanders RJ; Westerhoff HV Biochemistry; 1988 Oct; 27(20):7832-40. PubMed ID: 3207715 [TBL] [Abstract][Full Text] [Related]
7. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment. Bohnensack R; Küster U; Letko G Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323 [TBL] [Abstract][Full Text] [Related]
8. Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio. Küster U; Bohnensack R; Kunz W Biochim Biophys Acta; 1976 Aug; 440(2):391-402. PubMed ID: 952975 [TBL] [Abstract][Full Text] [Related]
9. The role of the adenine nucleotide translocator in oxidative phosphorylation. A theoretical investigation on the basis of a comprehensive rate law of the translocator. Bohnensack R J Bioenerg Biomembr; 1982 Feb; 14(1):45-61. PubMed ID: 6292176 [TBL] [Abstract][Full Text] [Related]
10. Temperature dependence of the coupling efficiency of rat liver oxidative phosphorylation: role of adenine nucleotide translocator. Quentin E; Avéret N; Guérin B; Rigoulet M Biochem Biophys Res Commun; 1994 Jul; 202(2):816-21. PubMed ID: 8048953 [TBL] [Abstract][Full Text] [Related]
11. [The mitochondrial carrier of adenylates controls ATP production in the physiological range of respiration rates]. Kholodenko BN Biofizika; 1984; 29(3):453-8. PubMed ID: 6087928 [TBL] [Abstract][Full Text] [Related]
12. Rate law of mitochondrial respiration versus extramitochondrial ATP/ADP ratio. Bohnensack R Biomed Biochim Acta; 1984; 43(4):403-11. PubMed ID: 6487276 [TBL] [Abstract][Full Text] [Related]
13. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation. Wilson DF; Nelson D; Erecińska M FEBS Lett; 1982 Jul; 143(2):228-32. PubMed ID: 6288461 [No Abstract] [Full Text] [Related]
14. Determination of the free-energy difference of the adenine nucleotide translocator reaction in rat-liver mitochondria using intra- and extramitochondrial ATP-utilizing reactions. Wanders RJ; Groen AK; Meijer AJ; Tager JM FEBS Lett; 1981 Sep; 132(2):201-6. PubMed ID: 6271588 [No Abstract] [Full Text] [Related]
15. Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. Jacobus WE; Moreadith RW; Vandegaer KM J Biol Chem; 1982 Mar; 257(5):2397-402. PubMed ID: 7061429 [TBL] [Abstract][Full Text] [Related]
16. Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes. Ciapaite J; Bakker SJ; Diamant M; van Eikenhorst G; Heine RJ; Westerhoff HV; Krab K FEBS J; 2006 Dec; 273(23):5288-302. PubMed ID: 17059463 [TBL] [Abstract][Full Text] [Related]
17. Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Devin A; Guérin B; Rigoulet M Biochim Biophys Acta; 1996 Jan; 1273(1):13-20. PubMed ID: 8573591 [TBL] [Abstract][Full Text] [Related]
18. The function of the adenine nucleotide translocator in the control of oxidative phosphorylation. Bohnensack R; Gellerich FN; Schild L; Kunz W Biochim Biophys Acta; 1990 Jul; 1018(2-3):182-4. PubMed ID: 2168208 [No Abstract] [Full Text] [Related]
19. Contribution of the translocator of adenine nucleotides and the ATP synthase to the control of oxidative phosphorylation and arsenylation in liver mitochondria. Moreno-Sánchez R J Biol Chem; 1985 Oct; 260(23):12554-60. PubMed ID: 2864340 [TBL] [Abstract][Full Text] [Related]
20. [Nucleotide control of ionic transport and ATP synthesis in mitochondria]. Dragunova SF; Novgorodov SA; Sharyshev AA; Iaguzhinskiĭ LS Biokhimiia; 1981 Jul; 46(7):1242-8. PubMed ID: 7272353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]