These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6717851)

  • 1. Projections of cerebellar Purkinje cells in the dogfish, Scyliorhinus.
    Paul DH; Roberts BL
    Neurosci Lett; 1984 Jan; 44(1):43-6. PubMed ID: 6717851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organisation of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: a light microscopic, immunocytochemical, and ultrastructural study.
    Alvarez-Otero R; Perez SE; Rodriguez MA; Anadón R
    J Comp Neurol; 1996 May; 368(4):487-502. PubMed ID: 8744438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on a primitive cerebellar cortex. I. The anatomy of the lateral-line lobes of the dogfish, Scyliorhinus canicula.
    Paul DH; Roberts BL
    Proc R Soc Lond B Biol Sci; 1977 Feb; 195(1121):453-66. PubMed ID: 15265
    [No Abstract]   [Full Text] [Related]  

  • 4. Medullary and cerebellar projections of the statoacoustic nerve of the dogfish, Scyliorhinus canicula.
    Boord RL; Roberts BL
    J Comp Neurol; 1980 Sep; 193(1):57-68. PubMed ID: 7430434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebellum of the dogfish, Scyliorhinus canicula: a quantitative study.
    Alvarez R; Anadón R
    J Hirnforsch; 1987; 28(2):133-7. PubMed ID: 3624858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of the reticular formation in the dogfish Scyliorhinus canicula [proceedings].
    Paul DH; Roberts BL
    J Physiol; 1978 Jul; 280():71P-72P. PubMed ID: 690935
    [No Abstract]   [Full Text] [Related]  

  • 7. At least one thalamotelencephalic pathway in cartilaginous fishes projects to the medial pallium.
    Smeets WJ; Northcutt RG
    Neurosci Lett; 1987 Aug; 78(3):277-82. PubMed ID: 3627563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar corticonuclear projections in the red-eared turtle Pseudemys scripta elegans.
    Bangma GC; ten Donkelaar HJ; Pellegrino A
    J Comp Neurol; 1983 Apr; 215(3):258-74. PubMed ID: 6304155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medullary and mesencephalic pathways and connections of lateral line neurons of the spiny dogfish Squalus acanthias.
    Boord RL; Northcutt RG
    Brain Behav Evol; 1988; 32(2):76-88. PubMed ID: 3179696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinofugal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata.
    Smeets WJ
    J Comp Neurol; 1981 Jan; 195(1):1-11. PubMed ID: 7204647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-Zebrin II immunopositivity in the cerebellum and octavolateral nuclei in two species of stingrays.
    Puzdrowski RL
    Brain Behav Evol; 1997; 50(6):358-68. PubMed ID: 9406645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HRP study of cerebellar corticonuclear-nucleocortical topography of the dorsal culminate lobule--lobule V--in a prosimian primate (Galago): with comments on nucleocortical cell types.
    Haines DE
    J Comp Neurol; 1989 Apr; 282(2):274-92. PubMed ID: 2468700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. III. The anterior lobe.
    Dietrichs E
    Anat Embryol (Berl); 1981; 162(2):223-47. PubMed ID: 7283182
    [No Abstract]   [Full Text] [Related]  

  • 15. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. II. Lobulus simplex, crus I and II.
    Dietrichs E; Walberg F
    Anat Embryol (Berl); 1980; 161(1):83-103. PubMed ID: 6160791
    [No Abstract]   [Full Text] [Related]  

  • 16. Calretinin-immunoreactive systems in the cerebellum and cerebellum-related lateral-line medullary nuclei of an elasmobranch, Scyliorhinus canicula.
    Anadón R; Ferreiro-Galve S; Sueiro C; Graña P; Carrera I; Yáñez J; Rodríguez-Moldes I
    J Chem Neuroanat; 2009 Jan; 37(1):46-54. PubMed ID: 18929640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker.
    De Camilli P; Miller PE; Levitt P; Walter U; Greengard P
    Neuroscience; 1984 Apr; 11(4):761-817. PubMed ID: 6330609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: an HRP study.
    Meek J; Nieuwenhuys R; Elsevier D
    J Comp Neurol; 1986 Mar; 245(3):319-41. PubMed ID: 3958249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myelinated synapse-bearing cell bodies in the central nervous system of Scyliorhinus canicula (L.).
    Roberts BL; Ryan KP
    Cell Tissue Res; 1976 Aug; 171(3):407-10. PubMed ID: 975222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The afferent connections of the tectum mesencephali in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata.
    Smeets WJ
    J Comp Neurol; 1982 Feb; 205(2):139-52. PubMed ID: 7076889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.