BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6720244)

  • 21. The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content.
    Gu WY; Mao XG; Foster RJ; Weidenbaum M; Mow VC; Rawlins BA
    Spine (Phila Pa 1976); 1999 Dec; 24(23):2449-55. PubMed ID: 10626306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization.
    Yu J; Schollum ML; Wade KR; Broom ND; Urban JP
    Spine (Phila Pa 1976); 2015 Aug; 40(15):1149-57. PubMed ID: 25893352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs.
    Nerlich AG; Schaaf R; Wälchli B; Boos N
    Eur Spine J; 2007 Apr; 16(4):547-55. PubMed ID: 16947015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical structure of the intervertebral disc.
    Cassidy JJ; Hiltner A; Baer E
    Connect Tissue Res; 1989; 23(1):75-88. PubMed ID: 2632144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the modeling of an intervertebral disc using a novel large deformation multi-shell approach.
    Demers S; Bouzid AH; Nadeau S
    J Biomech Eng; 2013 May; 135(5):51003. PubMed ID: 24231959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural localization and distribution of proteoglycan in normal and scoliotic lumbar disc.
    Akhtar S; Davies JR; Caterson B
    Spine (Phila Pa 1976); 2005 Jun; 30(11):1303-9. PubMed ID: 15928557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a rapid matrix digestion technique for ultrastructural analysis of elastic fibers in the intervertebral disc.
    Tavakoli J; Costi JJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():175-183. PubMed ID: 28342325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity of anulus fibrosus cells to interleukin 1 beta. Comparison with articular chondrocytes.
    Rannou F; Corvol MT; Hudry C; Anract P; Dumontier MF; Tsagris L; Revel M; Poiraudeau S
    Spine (Phila Pa 1976); 2000 Jan; 25(1):17-23. PubMed ID: 10647155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topographic differences of 1H-NMR relaxation times (T1, T2) in the normal intervertebral disc and its relationship to water content.
    Chatani K; Kusaka Y; Mifune T; Nishikawa H
    Spine (Phila Pa 1976); 1993 Nov; 18(15):2271-5. PubMed ID: 8278845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does long-term compressive loading on the intervertebral disc cause degeneration?
    Hutton WC; Ganey TM; Elmer WA; Kozlowska E; Ugbo JL; Doh ES; Whitesides TE
    Spine (Phila Pa 1976); 2000 Dec; 25(23):2993-3004. PubMed ID: 11145810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional observation of collagen framework of lumbar intervertebral discs.
    Inoue H; Takeda T
    Acta Orthop Scand; 1975 Dec; 46(6):949-56. PubMed ID: 1211132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of age on inflammatory responses and nerve root injuries after lumbar disc herniation: an experimental study in a canine model.
    Hasegawa T; An HS; Inufusa A; Mikawa Y; Watanabe R
    Spine (Phila Pa 1976); 2000 Apr; 25(8):937-40. PubMed ID: 10767805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 31P nuclear magnetic resonance spectroscopic evidence that canine nucleus pulposus and anulus fibrosus cells differ in principal organophosphorus biomolecules.
    Lee SL; Wasserlauf HG; Brault JS; Freydl KR; Earman WA; Glonek TO
    Spine (Phila Pa 1976); 1995 Nov; 20(21):2278-82. PubMed ID: 8553113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration.
    Cs-Szabo G; Ragasa-San Juan D; Turumella V; Masuda K; Thonar EJ; An HS
    Spine (Phila Pa 1976); 2002 Oct; 27(20):2212-9. PubMed ID: 12394896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural variation of the anterior and posterior anulus fibrosus in the development of human lumbar intervertebral disc. A risk factor for intervertebral disc rupture.
    Tsuji H; Hirano N; Ohshima H; Ishihara H; Terahata N; Motoe T
    Spine (Phila Pa 1976); 1993 Feb; 18(2):204-10. PubMed ID: 8441935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks.
    Ghezelbash F; Eskandari AH; Shirazi-Adl A; Kazempour M; Tavakoli J; Baghani M; Costi JJ
    Acta Biomater; 2021 Mar; 123():208-221. PubMed ID: 33453409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the laminate structure of lumbar disc anulus fibrosus.
    Marchand F; Ahmed AM
    Spine (Phila Pa 1976); 1990 May; 15(5):402-10. PubMed ID: 2363068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural immunolocalization of alpha-elastin and keratan sulfate proteoglycan in normal and scoliotic lumbar disc.
    Akhtar S; Davies JR; Caterson B
    Spine (Phila Pa 1976); 2005 Aug; 30(15):1762-9. PubMed ID: 16094279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multipotential differentiation of human anulus fibrosus cells: an in vitro study.
    Feng G; Yang X; Shang H; Marks IW; Shen FH; Katz A; Arlet V; Laurencin CT; Li X
    J Bone Joint Surg Am; 2010 Mar; 92(3):675-85. PubMed ID: 20194326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The vascularization of the intervertebral disks of the adult dog].
    Brunner K; Frewein J
    Anat Histol Embryol; 1989 Mar; 18(1):76-86. PubMed ID: 2712337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.