BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6720438)

  • 1. Isotachophoretic analysis of some compounds involved in energy metabolism in normal and pathological human muscle extracts.
    Brolsma MF; Oerlemans FT; Verburg MP; De Bruyn CH
    Adv Exp Med Biol; 1984; 165 Pt B():415-8. PubMed ID: 6720438
    [No Abstract]   [Full Text] [Related]  

  • 2. The purine nucleotide profile in mouse, chicken and human dystrophic muscle: an abnormal ratio of inosine plus adenine nucleotides to guanine nucleotides.
    Shuttlewood RJ; Griffiths JR
    Clin Sci (Lond); 1982 Jan; 62(1):113-5. PubMed ID: 7056028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotachophoretic analyses of metabolites of cardiac and skeletal muscles in four species.
    Aomine M; Arita M; Imanishi S; Kiyosue T
    Jpn J Physiol; 1982; 32(5):741-60. PubMed ID: 6984102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic resonance spectroscopy of normal and diseased muscles.
    Chance B; Younkin DP; Kelley R; Bank WJ; Berkowitz HD; Argov Z; Donlon E; Boden B; McCully K; Buist NM
    Am J Med Genet; 1986 Dec; 25(4):659-79. PubMed ID: 2947466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Destruction of muscle tissue and purine compound metabolism in hereditary muscular dystrophy].
    Toguzov RT; Sitnikov VF; Prokudin VIu; Tikhonov IuV; Pimenov AM
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1986; 86(11):1646-9. PubMed ID: 3811726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phosphorylated fractions and free adenine nucleotides of myopathic muscles in children].
    Berthillier G; Gautheron D; Robert JM
    C R Acad Hebd Seances Acad Sci D; 1967 Jul; 265(1):79-82. PubMed ID: 4383095
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolite profiling of human muscle extracts by isotachophoresis.
    Oerlemans F; van Bennekom C; De Bruyn C; Kulakowski S
    J Inherit Metab Dis; 1981; 4(2):109-10. PubMed ID: 6790840
    [No Abstract]   [Full Text] [Related]  

  • 9. Exercise and recovery in frog muscle: metabolism of PCr, adenine nucleotides, and related compounds.
    Krause U; Wegener G
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R811-20. PubMed ID: 8967411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Duchenne's muscular dystrophy: a tissue culture perspective.
    Bonsett CA; Rudman A
    Indiana Med; 1984 Jun; 77(6):446-9. PubMed ID: 6736618
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion.
    Welsh DG; Lindinger MI
    Am J Physiol; 1993 Apr; 264(4 Pt 1):E655-61. PubMed ID: 8476043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stimulation of replanted extremity muscles and its effect on energy processes].
    Shljakhova OO; Pidterherja VH
    Ukr Biokhim Zh; 1977; 49(5):9-13. PubMed ID: 162751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the turnover rate of phosphorylated fractions and free nucleotides in muscle under the influence of adrenaline].
    Gautheron D; Morelis R
    Bull Soc Chim Biol (Paris); 1965; 47(11):1923-40. PubMed ID: 4286814
    [No Abstract]   [Full Text] [Related]  

  • 14. [The energy metabolism of skeletal muscle in relation to aging].
    Honorati MC; Ermini M; Stecconi R
    Boll Soc Ital Biol Sper; 1973 Oct; 49(20):1134-40. PubMed ID: 4802342
    [No Abstract]   [Full Text] [Related]  

  • 15. Intracellular sodium flux and high-energy phosphorus metabolites in ischemic skeletal muscle.
    Blum H; Schnall MD; Chance B; Buzby GP
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C377-84. PubMed ID: 3421318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle.
    Aragón JJ; Tornheim K; Lowenstein JM
    FEBS Lett; 1980 Aug; 117 Suppl():K56-64. PubMed ID: 6774892
    [No Abstract]   [Full Text] [Related]  

  • 17. Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions.
    Gorselink M; Drost MR; van der Vusse GJ
    Pflugers Arch; 2001 Nov; 443(2):274-9. PubMed ID: 11713654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A defect of purine nucleotide cycle in the skeletal muscle of hereditary dystrophic mice.
    Sanada H; Yamaguchi M
    Biochem Biophys Res Commun; 1979 Sep; 90(2):453-9. PubMed ID: 508313
    [No Abstract]   [Full Text] [Related]  

  • 19. The incorportion of 15Ninto adenine nucleotides and their formation from inosine monophosphate by skeletal-muscle preparations.
    NEWTON AA; PERRY SV
    Biochem J; 1960 Jan; 74(1):127-36. PubMed ID: 14426839
    [No Abstract]   [Full Text] [Related]  

  • 20. Duchenne muscular dystrophy: normal ATP turnover in cultured cells.
    Fox IH; Shefner R; Palmieri GM; Bertorini T
    Adv Exp Med Biol; 1986; 195 Pt B():493-9. PubMed ID: 3766238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.