These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6721623)

  • 41. Characterization of Ca2+ transport and enzyme activity in microsomes isolated from guinea-pig stomach smooth muscle.
    Miyagawa M; Sakai Y
    Comp Biochem Physiol A Comp Physiol; 1985; 80(4):565-70. PubMed ID: 2859140
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum.
    Raeymaekers L; Wuytack F; Eggermont J; De Schutter G; Casteels R
    Biochem J; 1983 Feb; 210(2):315-22. PubMed ID: 6860302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adenosine triphosphate--dependent calcium uptake by rat submaxillary gland microsomes.
    Alonso GL; Bazerque PM; Arrigó DM; Tumilasci OR
    J Gen Physiol; 1971 Sep; 58(3):340-50. PubMed ID: 4255373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The plasma-membrane component is the primary site of action of alloxan on ATP-driven Ca2+ transport in vascular-muscle microsomal fractions.
    Kwan CY
    Biochem J; 1988 Aug; 254(1):293-6. PubMed ID: 3178751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study of the calcium accumulation by mitochondria and microsomes isolated from the smooth muscle of the guinea-pig taenia coli.
    Raeymaekers L; Wuytack F; Batra S; Casteels R
    Pflugers Arch; 1977 Apr; 368(3):217-23. PubMed ID: 194215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Some aspects of calcium uptake by human myometrial mitochondria and microsomes relevant to relaxation.
    Batra S
    Acta Physiol Scand; 1982 Jan; 114(1):91-5. PubMed ID: 7136750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of phospholipids on vascular microsomal 45Ca uptake, binding and efflux.
    Kutsky P; Weiss GB
    Arch Int Pharmacodyn Ther; 1983 May; 263(1):4-16. PubMed ID: 6412641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ATP-dependent Ca uptake by subcellular fractions of uterine smooth muscle.
    Batra SC; Daniel EE
    Comp Biochem Physiol A Comp Physiol; 1971 Feb; 38(2):369-85. PubMed ID: 4397610
    [No Abstract]   [Full Text] [Related]  

  • 49. The effect of cyclic dibutyryl adenosine 3',5'-monophosphate on mechanical activity and calcium movements of the smooth muscle of rat ileum and vas deferens.
    Saad KH; Huddart H
    Gen Pharmacol; 1980; 11(3):315-21. PubMed ID: 6248413
    [No Abstract]   [Full Text] [Related]  

  • 50. Characteristics of calcium transport and binding by rat myometrium plasma membrane subfractions.
    Grover AK; Kwan CY; Crankshaw J; Crankshaw DJ; Garfield RE; Daniel EE
    Am J Physiol; 1980 Sep; 239(3):C66-74. PubMed ID: 6254367
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy-dependent calcium sequestration activity in rat liver microsomes.
    Moore L; Chen T; Knapp HR; Landon EJ
    J Biol Chem; 1975 Jun; 250(12):4562-8. PubMed ID: 806589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analytical study of microsomes and isolated subcellular membranes from rat liver. IV. Biochemical, physical, and morphological modifications of microsomal components induced by digitonin, EDTA, and pyrophosphate.
    Amar-Costesec A; Wibo M; Thinès-Sempoux D; Beaufay H; Berthet J
    J Cell Biol; 1974 Sep; 62(3):717-45. PubMed ID: 4368410
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase.
    Benedetti A; Fulceri R; Comporti M
    Biochim Biophys Acta; 1985 Jun; 816(2):267-77. PubMed ID: 2988615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation and characterization of subcellular membranes from canine stomach smooth muscle.
    Sakai Y; McLean J; Grover AK; Garfield RE; Fox JE; Daniel EE
    Can J Physiol Pharmacol; 1981 Dec; 59(12):1260-7. PubMed ID: 6279258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bound forms of Ca taken up by the synaptic plasma membrane.
    Ichida S; Kuo CH; Uchida S; Nagai K; Yoshida H
    Jpn J Pharmacol; 1976 Oct; 26(5):551-8. PubMed ID: 1003709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane fractionation of canine aortic smooth muscle: subcellular distribution of calcium transport activity.
    Kwan CY; Triggle CR; Grover AK; Lee RM; Daniel EE
    J Mol Cell Cardiol; 1984 Aug; 16(8):747-64. PubMed ID: 6090679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of a new positive inotropic agent with a vasodilatory action, 5-methyl-6-(4-pyridyl)-2H-1,4-thiazin-3(4H)-one (ZSY-27), on calcium-movement and mechanical response in rabbit thoracic aorta.
    Yoshioka K; Takayanagi I; Koike K
    J Pharmacobiodyn; 1989 Nov; 12(11):667-70. PubMed ID: 2632763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ca2+ -uptake into noradrenaline-storing granules of bovine splenic nerves.
    Burger A; Bellersheim M
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Dec; 296(1):47-57. PubMed ID: 189227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Active calcium transport by intestinal endoplasmic reticulum during maturation.
    Ghishan FK; Arab N
    Am J Physiol; 1988 Jan; 254(1 Pt 1):G74-80. PubMed ID: 3337235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isolation of "light" noradrenaline-vesicles from rat vas deferens.
    Willems M; De Potter W
    Arch Int Pharmacodyn Ther; 1982 Aug; 258(2):333-4. PubMed ID: 6127988
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.