These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6722128)

  • 1. Determination of tyrosine exposure in proteins by second-derivative spectroscopy.
    Ragone R; Colonna G; Balestrieri C; Servillo L; Irace G
    Biochemistry; 1984 Apr; 23(8):1871-5. PubMed ID: 6722128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous determination of tyrosine and tryptophan residues in proteins by second-derivative spectroscopy.
    Servillo L; Colonna G; Balestrieri C; Ragone R; Irace G
    Anal Biochem; 1982 Nov; 126(2):251-7. PubMed ID: 7158764
    [No Abstract]   [Full Text] [Related]  

  • 3. Second-derivative spectroscopy of proteins. A method for the quantitative determination of aromatic amino acids in proteins.
    Balestrieri C; Colonna G; Giovane A; Irace G; Servillo L
    Eur J Biochem; 1978 Oct; 90(3):433-40. PubMed ID: 710441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of tryptophan, tyrosine, and phenylalanine by second derivative spectrophotometry.
    Nozaki Y
    Arch Biochem Biophys; 1990 Mar; 277(2):324-33. PubMed ID: 2310197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitation of tryptophan and tyrosine residues in proteins by fourth-derivative spectroscopy.
    Bray MR; Carriere AD; Clarke AJ
    Anal Biochem; 1994 Sep; 221(2):278-84. PubMed ID: 7810867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-derivative spectroscopy of proteins: studies on tyrosyl residues.
    Balestrieri C; Colonna G; Giovane A; Irace G; Servillo L
    Anal Biochem; 1980 Jul; 106(1):49-54. PubMed ID: 7416468
    [No Abstract]   [Full Text] [Related]  

  • 7. [Determination of solvent accessibility of residues of aromatic amino acids in proteins using the second derivative of the UV-absorption spectrum].
    Shevchenko AA; Kost OA; Kazanskaia NF
    Biokhimiia; 1994 Nov; 59(11):1707-13. PubMed ID: 7873678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of tryptophyl and tyrosyl exposure in tryptophan-rich proteins by ultraviolet difference spectrophotometry. Lysozyme and Chymotrypsinogen.
    Izumi T; Inoue H
    J Biochem; 1976 Jun; 79(6):1309-21. PubMed ID: 8442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid simultaneous determination of tryptophan and tyrosine in synthetic peptides by derivative spectroscopy.
    Bertini J; Mannucci C; Noferini R; Perico A; Rovero P
    J Pharm Sci; 1993 Feb; 82(2):179-82. PubMed ID: 8445532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of aromatic residues in proteins: model compounds for second-derivative spectroscopy.
    Levine RL; Federici MM
    Biochemistry; 1982 May; 21(11):2600-6. PubMed ID: 7093207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorimetric and spectrophotometric studies of DPN-linked isocitrate dehydrogenase from bovine heart. Properties of tyrosyl and tryptophyl residues.
    Fan CC; Tomcho LA; Plaut GW
    J Biol Chem; 1975 Aug; 250(16):6197-203. PubMed ID: 1171862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy.
    Mach H; Middaugh CR
    Anal Biochem; 1994 Nov; 222(2):323-31. PubMed ID: 7864355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the location of tyrosyl and tryptophyl residues in protein. II. Applications of model data to solvent perturbation studies of proteins rich in both tyrosine and tryptophan.
    Herskovits TT; Sorensen M
    Biochemistry; 1968 Jul; 7(7):2533-42. PubMed ID: 4873176
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of tryptophan and tyrosine residues in peptides separated by capillary electrophoresis by their second-derivative spectra using diode-array detection.
    Grimm R; Graf A; Heiger DN
    J Chromatogr A; 1994 Sep; 679(1):173-80. PubMed ID: 7951988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of the location of tyrosyl and tryptophyl residues in proteins. I. Solvent perturbation data of model compounds.
    Herskovits TT; Sorensen M
    Biochemistry; 1968 Jul; 7(7):2523-32. PubMed ID: 5660072
    [No Abstract]   [Full Text] [Related]  

  • 16. Determination of the tryptophan:tyrosine ratio in proteins.
    Waxman E; Rusinova E; Hasselbacher CA; Schwartz GP; Laws WR; Ross JB
    Anal Biochem; 1993 May; 210(2):425-8. PubMed ID: 8512082
    [No Abstract]   [Full Text] [Related]  

  • 17. Location of tryptophyl and tyrosyl residues in human chorionic gonadotropin.
    Mori KF
    Biochim Biophys Acta; 1972 Feb; 257(2):523-6. PubMed ID: 5022435
    [No Abstract]   [Full Text] [Related]  

  • 18. Exposure to solvent of tyrosyl and tryptophanyl residues of bovine antithrombin in the absence and presence of high-affinity and low-affinity heparin.
    Björk I; Larsson K
    Biochim Biophys Acta; 1980 Feb; 621(2):273-82. PubMed ID: 7353045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Conformational states of aspartate-aminotransferase as studied by solvent perturbation difference spectroscopy. II. Perturbation of the UV-absorption spectra of the protein by the coenzyme and ethylene glycol].
    Kogan GA; Bocharov AL; Karpeĭskiĭ MIa
    Mol Biol; 1974; 8(5):762-7. PubMed ID: 4469584
    [No Abstract]   [Full Text] [Related]  

  • 20. Examination of phenylalanine microenvironments in proteins by second-derivative absorption spectroscopy.
    Mach H; Thomson JA; Middaugh CR; Lewis RV
    Arch Biochem Biophys; 1991 May; 287(1):33-40. PubMed ID: 1897992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.