BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 6722153)

  • 1. Anesthetic-protein interaction. Random versus helix polylysine monolayers and interaction with 1-alkanols.
    Shibata A; Suezaki Y; Kamaya H; Ueda I
    Biochim Biophys Acta; 1984 May; 772(3):383-92. PubMed ID: 6722153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanisms of monolayer interactions IV: Surface activity of alkanols and energies of their interaction with dipalmitoyllecithin and dipalmitoylphosphatidylethanolamine.
    Vilallonga FA; Garrett ER; Hunt JS
    J Pharm Sci; 1977 Sep; 66(9):1229-34. PubMed ID: 578527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular ordering and phase transitions in alkanol monolayers at the water-hexane interface.
    Tikhonov AM; Pingali SV; Schlossman ML
    J Chem Phys; 2004 Jun; 120(24):11822-38. PubMed ID: 15268217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atypical Langmuir adsorption of inhalation anesthetics on phospholipid monolayer at various compressional states: difference between alkane-type and ether-type anesthetics.
    Suezaki Y; Shibata A; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Jul; 817(1):139-46. PubMed ID: 3839136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface activities of tertiary amine local anesthetics at air/water interface in the presence and absence of phospholipid monolayers.
    Lin HC; Ueda I; Lin SH; Shieh DD; Kamaya H; Eyring H
    Biochim Biophys Acta; 1980 May; 598(1):51-65. PubMed ID: 7417430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding of an amphipathic peptide to lipid monolayers at the air/water interface is modulated by the lipid headgroup structure.
    Arouri A; Kerth A; Dathe M; Blume A
    Langmuir; 2011 Mar; 27(6):2811-8. PubMed ID: 21319763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of inactivation in the effects of n-alkanols on the sodium current of cultured rat sensory neurones.
    Elliott AA; Elliott JR
    J Physiol; 1989 Aug; 415():19-33. PubMed ID: 2561786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional surface properties of PEO-PPO-PEO triblock copolymer film at the air/water interface in the absence and presence of Tyr-Phe dipeptide, Val-Tyr-Val tripeptide, SDS and stearic acid.
    James J; Ramalechume C; Mandal AB
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):345-53. PubMed ID: 20888193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between polylysine monolayer and DNA at the air-water interface.
    Niwa M; Morikawa Ma; Yagi K; Higashi N
    Int J Biol Macromol; 2002 Mar; 30(1):47-54. PubMed ID: 11893393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on water evaporation through 1-alkanol monolayers by the thermogravimetry method.
    Rusdi M; Moroi Y
    J Colloid Interface Sci; 2004 Apr; 272(2):472-9. PubMed ID: 15028513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of n-alkanols and a methyl ester on a transient potassium (IA) current in identified neurones from Helix aspersa.
    Winpenny JP; Elliott JR; Harper AA
    J Physiol; 1992 Oct; 456():1-17. PubMed ID: 1293276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage Langmuir monolayers and Langmuir-Blodgett films.
    Guntupalli R; Sorokulova I; Long R; Olsen E; Neely W; Vodyanoy V
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):182-9. PubMed ID: 20843668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supported cell mimetic monolayers and their interaction with blood.
    Kaladhar K; Sharma CP
    Langmuir; 2004 Dec; 20(25):11115-22. PubMed ID: 15568865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of alkanols on Au(111) surfaces.
    Zhang HM; Yan JW; Xie ZX; Mao BW; Xu X
    Chemistry; 2006 May; 12(15):4006-13. PubMed ID: 16534826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of n-alkanols with lipid bilayer membranes: a 2H-NMR study.
    Westerman PW; Pope JM; Phonphok N; Doane JW; Dubro DW
    Biochim Biophys Acta; 1988 Mar; 939(1):64-78. PubMed ID: 3349082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alcohol effects on rapid kinetics of water transport through lipid membranes and location of the main barrier.
    Inoue T; Kamaya H; Ueda I
    Biochim Biophys Acta; 1985 Apr; 815(1):68-74. PubMed ID: 3986204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of membrane fluidizing agents on renal brush border proton permeability.
    Ives HE; Verkman AS
    Am J Physiol; 1985 Dec; 249(6 Pt 2):F933-40. PubMed ID: 4073275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcohols at the aqueous surface: chain length and isomer effects.
    Walz MM; Werner J; Ekholm V; Prisle NL; Öhrwall G; Björneholm O
    Phys Chem Chem Phys; 2016 Mar; 18(9):6648-56. PubMed ID: 26868637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of cetyltrimethylammonium bromide and propanol mixtures with regard to wettability of polytetrafluoroethylene. I. Adsorption at aqueous solution-air interface.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2008 Jan; 317(1):44-53. PubMed ID: 17931646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.