BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 6722218)

  • 1. [Dissociation constants of succinate dehydrogenase complexes with succinate, fumarate and malonate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1984 Mar; 49(3):511-8. PubMed ID: 6722218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Interaction of succinate dehydrogenase and oxaloacetate].
    Kotliar AB; Vinogradov AD
    Biokhimiia; 1984 Apr; 49(4):667-75. PubMed ID: 6733163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1984 Jan; 784(1):24-34. PubMed ID: 6691982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of mitochondrial succinate:ubiquinone reductase with thenoyltrifluoroacetone and carboxin].
    Grivennikova VG; Vinogradov AD
    Biokhimiia; 1985 Mar; 50(3):375-83. PubMed ID: 3995101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E; Cecchini G
    Arch Biochem Biophys; 1999 Sep; 369(2):223-32. PubMed ID: 10486141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for an essential arginine residue in the substrate binding site of the mammalian succinate dehydrogenase.
    Kotlyar AB; Vinogradov AD
    Biochem Int; 1984 Apr; 8(4):545-52. PubMed ID: 6477618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reaction ability and alkylation kinetics of sulfhydride groups of soluble succinate dehydrogenase].
    Gavrikova EV; Zuevskiĭ VV; Vinogradov AD
    Biokhimiia; 1975; 40(6):1193-204. PubMed ID: 2331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction.
    Grivennikova VG; Gavrikova EV; Timoshin AA; Vinogradov AD
    Biochim Biophys Acta; 1993 Jan; 1140(3):282-92. PubMed ID: 8417779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diode-like behaviour of a mitochondrial electron-transport enzyme.
    Sucheta A; Ackrell BA; Cochran B; Armstrong FA
    Nature; 1992 Mar; 356(6367):361-2. PubMed ID: 1549182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the interaction of cadmium with membrane-bound succinate dehydrogenase.
    Jay D; Zamorano R; Muñoz E; Gleason R; Boldu JL
    J Bioenerg Biomembr; 1991 Apr; 23(2):381-9. PubMed ID: 2050657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].
    Belikova IuO; Kotliar AB
    Biokhimiia; 1988 Apr; 53(4):668-76. PubMed ID: 3395646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of extraction of ubiquinone on succinate-ferricyanide reductase activity.
    Landi L; Pasquali P; Cabrini L; Fahmy T; Lenaz G
    Ital J Biochem; 1982; 31(5):322-8. PubMed ID: 7169318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate oxidase and fumarate reductase systems of filarial parasite Setaria digitata.
    Unnikrishnan LS; Raj RK
    Indian J Biochem Biophys; 2000 Apr; 37(2):130-4. PubMed ID: 10983424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.
    Butler JE; Glaven RH; Esteve-Núñez A; Núñez C; Shelobolina ES; Bond DR; Lovley DR
    J Bacteriol; 2006 Jan; 188(2):450-5. PubMed ID: 16385034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanistic mapping of a unique fumarate reductase.
    Taylor P; Pealing SL; Reid GA; Chapman SK; Walkinshaw MD
    Nat Struct Biol; 1999 Dec; 6(12):1108-12. PubMed ID: 10581550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin.
    Ksenzenko M; Konstantinov AA; Khomutov GB; Tikhonov AN; Ruuge EK
    FEBS Lett; 1984 Sep; 175(1):105-8. PubMed ID: 6090204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilized mitochondrial electron transport particle for NADH determination.
    Aizawa M; Wada M; Kato S; Suzuki S
    Biotechnol Bioeng; 1980 Sep; 22(9):1769-83. PubMed ID: 7407338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of membrane-bound succinate dehydrogenase by fluorescamine.
    Jay D; Jay EG; Garcia C
    J Bioenerg Biomembr; 1993 Dec; 25(6):685-8. PubMed ID: 8144496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.