These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6722261)

  • 1. Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane.
    Daily B; Elson EL; Zahalak GI
    Biophys J; 1984 Apr; 45(4):671-82. PubMed ID: 6722261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic correction to elastic area compressibility measurements on red cell membrane.
    Evans EA; Waugh R
    Biophys J; 1977 Dec; 20(3):307-13. PubMed ID: 922122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelasticity of red blood cell membrane.
    Waugh R; Evans EA
    Biophys J; 1979 Apr; 26(1):115-31. PubMed ID: 262408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic area compressibility modulus of red cell membrane.
    Evans EA; Waugh R; Melnik L
    Biophys J; 1976 Jun; 16(6):585-95. PubMed ID: 1276386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of the apparent area expansivity modulus of red blood cell membrane by electric fields.
    Katnik C; Waugh R
    Biophys J; 1990 Apr; 57(4):877-82. PubMed ID: 2344470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrin, human erythrocyte shapes, and mechanochemical properties.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Biophys J; 1986 Jan; 49(1):319-27. PubMed ID: 3955175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decreased mechanical stability of neonatal red cell membrane quantified by measurement of the elastic area compressibility modulus.
    Meyburg J; Böhler T; Linderkamp O
    Clin Hemorheol Microcirc; 2000; 22(1):67-73. PubMed ID: 10711823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells.
    Evans EA
    Biophys J; 1980 May; 30(2):265-84. PubMed ID: 7260275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM; Worthy PR; Evans EA
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelasticity of large lecithin bilayer vesicles.
    Kwok R; Evans E
    Biophys J; 1981 Sep; 35(3):637-52. PubMed ID: 7272454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte membrane elasticity during in vivo ageing.
    Nash GB; Wyard SJ
    Biochim Biophys Acta; 1981 May; 643(2):269-75. PubMed ID: 7225381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmoelastic coupling in biological structures: a comprehensive thermodynamic analysis of the osmotic response of phospholipid vesicles and a reevaluation of the "dehydration force" theory.
    Ito T; Yamazaki M; Ohnishi S
    Biochemistry; 1989 Jun; 28(13):5626-30. PubMed ID: 2775726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscoelastic behavior of erythrocyte membrane.
    Tözeren A; Skalak R; Sung KL; Chien S
    Biophys J; 1982 Jul; 39(1):23-32. PubMed ID: 7104447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a filter aspiration technique to determine membrane deformability.
    Reinhart WH; Chabanel A; Vayo M; Chien S
    J Lab Clin Med; 1987 Oct; 110(4):483-94. PubMed ID: 3655526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Eur Biophys J; 1986; 13(4):219-33. PubMed ID: 3709420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of a model network for the erythrocyte cytoskeleton.
    Boal DH
    Biophys J; 1994 Aug; 67(2):521-9. PubMed ID: 7948670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles.
    Bo L; Waugh RE
    Biophys J; 1989 Mar; 55(3):509-17. PubMed ID: 2930831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.