These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6722261)

  • 41. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells.
    Evans EA
    Biophys J; 1973 Sep; 13(9):941-54. PubMed ID: 4733701
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The deformation of an erythrocyte under the radiation pressure by optical stretch.
    Liu YP; Li C; Liu KK; Lai AC
    J Biomech Eng; 2006 Dec; 128(6):830-6. PubMed ID: 17154682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elastic properties of the erythrocyte membrane and the critical cell volume of erythrocytes.
    Mosior M
    Biochim Biophys Acta; 1988 Dec; 946(2):429-30. PubMed ID: 3207757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein's native state stability in a chemically induced denaturation mechanism.
    Olivares-Quiroz L; Garcia-Colin LS
    J Theor Biol; 2007 May; 246(2):214-24. PubMed ID: 17306831
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of constitutive law on the erythrocyte membrane response to large strains.
    Pepona M; Gounley J; Randles A
    Comput Math Appl; 2023 Feb; 132():145-160. PubMed ID: 38222470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane skeleton restraint of surface shape change during fusion of erythrocyte membranes: evidence from use of osmotic and dielectrophoretic microforces as probes.
    Sowers AE
    Biophys J; 1995 Dec; 69(6):2507-16. PubMed ID: 8599657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The stress-free shape of the red blood cell membrane.
    Fischer TM; Haest CW; Stöhr-Liesen M; Schmid-Schönbein H; Skalak R
    Biophys J; 1981 Jun; 34(3):409-22. PubMed ID: 7248469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adiabatic compressibility of red blood cell membrane: influence of skeleton.
    Hianik T; Rybár P; Bernhardt I
    Bioelectrochemistry; 2000 Dec; 52(2):197-201. PubMed ID: 11129243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effects of the alterations of membrane shear elastic modulus and viscosity on the deformation and orientation of RBCs].
    Xie L; Yang H; Yao W; Liu D; Zeng Z; Ka W; Sun D; Wen Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):218-22, 226. PubMed ID: 11450538
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes.
    Chacón E; Tarazona P; Bresme F
    J Chem Phys; 2015 Jul; 143(3):034706. PubMed ID: 26203041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A multiscale approach to the elastic moduli of biomembrane networks.
    Fraternali F; Marcelli G
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1097-108. PubMed ID: 22350843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Experimental study on erythrocyte of obstructive jaundice patient: its changes of membrane protein and mechanical properties].
    Yang R; Wu Y; Jiang J; Wu Z; Long M; Wu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):274-8. PubMed ID: 11326849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: Effects of the constitutive law and membrane modeling.
    Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041917. PubMed ID: 22680508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Micropipet aspiration for measuring elastic properties of lipid bilayers.
    Longo ML; Ly HV
    Methods Mol Biol; 2007; 400():421-37. PubMed ID: 17951750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Erythrocyte membrane deformability in patients with thalassemia syndromes.
    Athanasiou G; Zoubos N; Missirlis Y
    Nouv Rev Fr Hematol (1978); 1991; 33(1):15-20. PubMed ID: 1945820
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A sensitive measure of surface stress in the resting neutrophil.
    Needham D; Hochmuth RM
    Biophys J; 1992 Jun; 61(6):1664-70. PubMed ID: 1617145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osmotic equilibrium and elastic properties of eel intestinal vesicles.
    Alves P; Soveral G; Macey RI; Moura TF
    J Membr Biol; 1999 Sep; 171(2):171-6. PubMed ID: 10489428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.