These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 6722268)
1. A quantitative description in three dimensions of oxygen uptake by human red blood cells. Vandegriff KD; Olson JS Biophys J; 1984 Apr; 45(4):825-35. PubMed ID: 6722268 [TBL] [Abstract][Full Text] [Related]
2. The rate of oxygen uptake by human red blood cells. Coin JT; Olson JS J Biol Chem; 1979 Feb; 254(4):1178-90. PubMed ID: 762123 [TBL] [Abstract][Full Text] [Related]
3. The kinetics of O2 release by human red blood cells in the presence of external sodium dithionite. Vandegriff KD; Olson JS J Biol Chem; 1984 Oct; 259(20):12609-18. PubMed ID: 6490633 [TBL] [Abstract][Full Text] [Related]
4. Morphological and physiological factors affecting oxygen uptake and release by red blood cells. Vandegriff KD; Olson JS J Biol Chem; 1984 Oct; 259(20):12619-27. PubMed ID: 6490634 [TBL] [Abstract][Full Text] [Related]
5. Diffusing capacity reexamined: relative roles of diffusion and chemical reaction in red cell uptake of O2, CO, CO2, and NO. Chakraborty S; Balakotaiah V; Bidani A J Appl Physiol (1985); 2004 Dec; 97(6):2284-302. PubMed ID: 15322062 [TBL] [Abstract][Full Text] [Related]
6. Theoretical analysis of oxygen supply to contracted skeletal muscle. Groebe K; Thews G Adv Exp Med Biol; 1986; 200():495-514. PubMed ID: 3799342 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of O2 uptake and release by red cells in stopped-flow apparatus: effects of unstirred layer. Holland RA; Shibata H; Scheid P; Piiper J Respir Physiol; 1985 Jan; 59(1):71-91. PubMed ID: 3975504 [TBL] [Abstract][Full Text] [Related]
8. An analysis of the stopped-flow kinetics of gaseous ligand uptake and release by adult mouse erythrocytes. Brittain T; Simpson R Biochem J; 1989 May; 260(1):171-6. PubMed ID: 2505748 [TBL] [Abstract][Full Text] [Related]
9. Oxygen mass transfer rates in intact red blood cells. Chang BH; Fleischman M; Miller CE Adv Exp Med Biol; 1973; 37():963-8. PubMed ID: 4766521 [No Abstract] [Full Text] [Related]
10. Turbulent flow of red cells in dilute suspensions. Effect on kinetics of O2 uptake. Gad-El-Hak M; Morton JB; Kutchal H Biophys J; 1977 Jun; 18(3):289-300. PubMed ID: 890028 [TBL] [Abstract][Full Text] [Related]
11. Oxygen release of human erythrocytes during flow. Zander R; Schmid-Schönbein H Bibl Anat; 1973; 11():111-6. PubMed ID: 4789031 [No Abstract] [Full Text] [Related]
12. Influence of red cell oxygen affinity and physical properties on oxygen exchange. Norton JM; Rand PW; Macalaster EG J Maine Med Assoc; 1976 Jan; 67(1):13-9. PubMed ID: 1244412 [No Abstract] [Full Text] [Related]
13. Oxygen diffusion in blood: a translational model of shear-induced augmentation. Diller TE; Mikic BB J Biomech Eng; 1983 Nov; 105(4):346-52. PubMed ID: 6645443 [TBL] [Abstract][Full Text] [Related]
14. The rate of the deoxygenation reaction limits myoglobin- and hemoglobin-facilitated O₂ diffusion in cells. Endeward V J Appl Physiol (1985); 2012 May; 112(9):1466-73. PubMed ID: 22362405 [TBL] [Abstract][Full Text] [Related]
15. Effect of diffusion boundary layers on the initial uptake of O2 by red cells. Theory versus experiment. Huxley VH; Kutchai H Microvasc Res; 1983 Jul; 26(1):89-107. PubMed ID: 6888290 [TBL] [Abstract][Full Text] [Related]
16. A graphical analysis of the influence of red cell transit time, carrier-free layer thickness, and intracellular PO2 on blood-tissue O2 transport. Gayeski TE; Federspiel WJ; Honig CR Adv Exp Med Biol; 1988; 222():25-35. PubMed ID: 3364248 [No Abstract] [Full Text] [Related]
17. Polymerization in erythrocytes containing S and non-S hemoglobins. Noguchi CT Biophys J; 1984 Jun; 45(6):1153-8. PubMed ID: 6743746 [TBL] [Abstract][Full Text] [Related]
18. Hydrodynamic and diffusion considerations of rapid-mix experiments with red blood cells. Rice SA Biophys J; 1980 Jan; 29(1):65-77. PubMed ID: 7260247 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. Azarov I; Huang KT; Basu S; Gladwin MT; Hogg N; Kim-Shapiro DB J Biol Chem; 2005 Nov; 280(47):39024-32. PubMed ID: 16186121 [TBL] [Abstract][Full Text] [Related]
20. The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes. Huxley VH; Kutchai H J Physiol; 1981 Jul; 316():75-83. PubMed ID: 7320883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]