BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 6722778)

  • 1. Origin of increased deoxycytidine excretion into urine of rats bearing Yoshida ascites sarcoma.
    Shimizu M; Fujimura S
    Cancer Res; 1984 Jun; 44(6):2387-92. PubMed ID: 6722778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the abnormal excretion of pyrimidine nucleosides in the urine of Yoshida ascites sarcoma-bearing rats. Increased excretion of deoxycytidine, pseudouridine and cytidine.
    Shimizu M; Fujimura S
    Biochim Biophys Acta; 1978 Feb; 517(2):277-86. PubMed ID: 626740
    [No Abstract]   [Full Text] [Related]  

  • 3. Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers.
    Katahira R; Ashihara H
    Planta; 2002 Sep; 215(5):821-8. PubMed ID: 12244448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of 5-trifluoromethyldeoxycytidine and tetrahydrouridine to circumvent catabolism and exploit high levels of cytidine deaminase in tumors to achieve DNA- and target-directed therapies.
    Mekras JA; Boothman DA; Greer SB
    Cancer Res; 1985 Nov; 45(11 Pt 1):5270-80. PubMed ID: 2932216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribonucleic acid labelling perfused livers of protein-fed and protein-deprived rats.
    Christensson PI; Eriksson G; Stenram U
    Cytobios; 1977; 20(79-80):199-217. PubMed ID: 617793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2',3'-Dideoxycytidine: regulation of its metabolism and anti-retroviral potency by natural pyrimidine nucleosides and by inhibitors of pyrimidine nucleotide synthesis.
    Balzarini J; Cooney DA; Dalal M; Kang GJ; Cupp JE; DeClercq E; Broder S; Johns DG
    Mol Pharmacol; 1987 Dec; 32(6):798-806. PubMed ID: 2826994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between antitumor effect and metabolites of 5-fluorouracil in combination treatment with 5-fluorouracil and guanosine in ascites sarcoma 180 tumor system.
    Iigo M; Kuretani K; Hoshi A
    Cancer Res; 1983 Dec; 43(12 Pt 1):5687-94. PubMed ID: 6640523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular distribution of various enzymes concerned with DNA synthesis from normal and regenerating rat liver, and Yoshida sarcoma.
    Shiosaka T; Arima T; Toide H; Okuda H; Fujii S
    J Biochem; 1975 Jan; 77(1?):249-56. PubMed ID: 1137986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental studies on the antitumor effect of progesterone and enhancement of the therapeutic effect of anticancer drugs by progesterone--from the aspect of zinc metabolism].
    Ujiie S; Mimata Y; Okuno M; Wakui A
    Gan To Kagaku Ryoho; 1989 Jul; 16(7):2423-8. PubMed ID: 2751319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of urea cycle enzymes in transplantable hepatomas and in the livers of tumor-bearing rats and humans.
    Brebnor LD; Grimm J; Balinsky JB
    Cancer Res; 1981 Jul; 41(7):2692-9. PubMed ID: 6265064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA synthesis in tumor-bearing rats.
    Shirasaka T; Fujii S
    Cancer Res; 1975 Mar; 35(3):517-20. PubMed ID: 1116120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in whole body, muscle, liver, and tumor tissue protein synthesis and degradation in Novikoff hepatoma and Yoshida sarcoma tumor growth studied in vivo.
    Tayek JA; Blackburn GL; Bistrian BR
    Cancer Res; 1988 Mar; 48(6):1554-8. PubMed ID: 3345528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-dependent differences in the biosynthesis of pyrimidine nucleotides in rat liver after repeated administration of alpha-hexachlorocyclohexane.
    Seifert J; Vácha J
    Drug Metab Dispos; 1975; 3(6):430-6. PubMed ID: 54245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation-linked increase in phosphoribosylformylglycinamidine synthetase activity (EC 6.3.5.3).
    Elliott WL; Weber G
    Cancer Res; 1984 Jun; 44(6):2430-4. PubMed ID: 6722784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NTP Toxicology and Carcinogenesis Studies of 1-Amino-2,4-Dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F1 Mice (Feed Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1996 Aug; 383():1-370. PubMed ID: 12692653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turnover of messenger RNA in transplantable hepatomas and host liver of rats.
    Sidransky H; Murty CN; Verney E
    Cancer Res; 1978 Jun; 38(6):1645-53. PubMed ID: 206354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations of pyrimidine and nucleic acid synthesis during adaptive growth of liver induced by nafenopin, a peroxisome proliferator. An in vivo study.
    Seifert J; Mostecká H
    Carcinogenesis; 1989 Aug; 10(8):1383-8. PubMed ID: 2473851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of pyrimidine nucleotides in various tissues and tumor cells from rodents.
    Ikenaka K; Fukushima M; Nakamura H; Okamoto M; Shirasaka T; Fujii S
    Gan; 1981 Aug; 72(4):590-7. PubMed ID: 6273249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glutamate dehydrogenase, choline oxidase, and glucose-6-phosphatase on 67Ga accumulation in lysosome.
    Li SL; Ando A; Ando I
    Zhongguo Yao Li Xue Bao; 1995 Jan; 16(1):51-3. PubMed ID: 7771197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hepatic artery ligation on the incorporation of 3H-orotic acid into an adenocarcinoma transplanted to rat liver.
    Erichsen C; Christensson PI; Jönsson PE; Stenram U
    Eur J Surg Oncol; 1986 Jun; 12(2):181-6. PubMed ID: 2423375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.