BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6722932)

  • 1. Reductive halothane metabolite formation and halothane binding in rat hepatic microsomes.
    Baker MT; Van Dyke RA
    Chem Biol Interact; 1984 Apr; 49(1-2):121-32. PubMed ID: 6722932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of the reductive metabolism of halothane by microsomal cytochrome b5 in rat liver.
    Tamura S; Kawata S; Sugiyama T; Tarui S
    Biochim Biophys Acta; 1987 Dec; 926(3):231-8. PubMed ID: 3689822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic activation of the halothane metabolite, [14C]2-chloro-1,1-difluoroethene, in hepatic microsomes.
    Baker MT; Bates JN
    Drug Metab Dispos; 1988; 16(2):169-72. PubMed ID: 2898328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of reductive dehalogenation of halothane by liver cytochrome P450.
    Ahr HJ; King LJ; Nastainczyk W; Ullrich V
    Biochem Pharmacol; 1982 Feb; 31(3):383-90. PubMed ID: 7073765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulatory effects of halothane and isoflurane on fluoride release and cytochrome P-450 loss caused by metabolism of 2-chloro-1,1-difluoroethene, a halothane metabolite.
    Baker MT; Bates JN; Leff SV
    Anesth Analg; 1987 Nov; 66(11):1141-7. PubMed ID: 2889401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.
    Spracklin DK; Thummel KE; Kharasch ED
    Drug Metab Dispos; 1996 Sep; 24(9):976-83. PubMed ID: 8886607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes.
    Fujii K
    Toxicology; 1995 Dec; 104(1-3):123-8. PubMed ID: 8560490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.
    Baker MT; Vasquez MT; Bates JN; Chiang CK
    Drug Metab Dispos; 1990; 18(5):753-8. PubMed ID: 1981732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The release of inorganic fluoride from halothane and halothane metabolites by cytochrome P-450, hemin, and hemoglobin.
    Baker MT; Nelson RM; Van Dyke RA
    Drug Metab Dispos; 1983; 11(4):308-11. PubMed ID: 6137335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoflurane increases the anaerobic metabolites of halothane.
    Rahman M; Fujii K; Sato N; Yuge O
    J Appl Toxicol; 1994; 14(1):43-6. PubMed ID: 8157869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the stability and cytochrome P450 specificity of the phenobarbital-induced reductive halothane-cytochrome P450 complex formed in rat hepatic microsomes.
    Baker MT; Vasquez MT; Chiang CK
    Biochem Pharmacol; 1991 Jun; 41(11):1691-9. PubMed ID: 2043158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive metabolism of halothane by purified cytochrome P-450.
    Van Dyke RA; Baker MT; Jansson I; Schenkman J
    Biochem Pharmacol; 1988 Jun; 37(12):2357-61. PubMed ID: 3390202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome P450. Stimulation of P450 activity and chlorodifluoroethene metabolism.
    Wang Y; Olson MJ; Baker MT
    Biochem Pharmacol; 1993 Jul; 46(1):87-94. PubMed ID: 8347140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6).
    Minoda Y; Kharasch ED
    Anesthesiology; 2001 Aug; 95(2):509-14. PubMed ID: 11506127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive metabolism of halothane by human and rabbit cytochrome P-450. Binding of 1-chloro-2,2,2-trifluoroethyl radical to phospholipids.
    Trudell JR; Bösterling B; Trevor AJ
    Mol Pharmacol; 1982 May; 21(3):710-7. PubMed ID: 7110119
    [No Abstract]   [Full Text] [Related]  

  • 16. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH and oxygen consumption in isoflurane-facilitated 2-chloro-1,1- difluoroethene metabolism in rabbit liver microsomes.
    Wang Y; Baker MT
    Drug Metab Dispos; 1993; 21(2):299-304. PubMed ID: 8097700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes.
    Kawamoto M; Fujii K; Yuge O; Morio M
    Hiroshima J Med Sci; 1989 Dec; 38(4):161-7. PubMed ID: 2637243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on reductive dehalogenation of halothane in liver, kidney and lung of the rabbit.
    Inoue T; Fujii K; Kikuchi H; Yuge O; Morio M
    Hiroshima J Med Sci; 1990 Dec; 39(4):115-8. PubMed ID: 2086561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen concentrations required for reductive defluorination of halothane by rat hepatic microsomes.
    Lind RC; Gandolfi AJ; Sipes IG; Brown BR; Waters SJ
    Anesth Analg; 1986 Aug; 65(8):835-9. PubMed ID: 3729018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.