BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6722932)

  • 21. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane.
    Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR; Lind RC
    Anesthesiology; 1981 May; 54(5):383-9. PubMed ID: 7224207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of gomisi on reductive metabolism of halothane.
    Jiaxiang N; Fujii K; Sato N; Yuge O
    J Appl Toxicol; 1993; 13(6):385-8. PubMed ID: 8288841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic dehalogenation of halothane showing different substrate dependency from anaerobic dehalogenation in liver microsomes of guinea pig.
    Nakao M; Fujii K; Kinoshita H; Yuge O; Morio M
    Hiroshima J Med Sci; 1991 Mar; 40(1):23-8. PubMed ID: 1864763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive metabolism of halothane in children.
    Plummer JL; Van der Walt JH; Cousins MJ
    Anaesth Intensive Care; 1984 Nov; 12(4):293-5. PubMed ID: 6517287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane.
    Manno M; Cazzaro S; Rezzadore M
    Arch Toxicol; 1991; 65(3):191-8. PubMed ID: 2053846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effects of corticoids on reductive halothane dehalogenation.
    Fujii K
    Drug Metabol Drug Interact; 1995; 12(1):37-43. PubMed ID: 7555000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-course of formation of volatile reductive metabolites of halothane in humans and an animal model.
    Gourlay GK; Adams JF; Cousins MJ; Sharp JH
    Br J Anaesth; 1980 Mar; 52(3):331-6. PubMed ID: 7370149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of volatile halothane metabolites in biological tissues by gas chromatography.
    Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR
    J Chromatogr; 1979 Sep; 164(1):63-72. PubMed ID: 541398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic differences in reductive metabolism and hepatotoxicity of halothane in three rat strains.
    Gourlay GK; Adams JF; Cousins MJ; Hall P
    Anesthesiology; 1981 Aug; 55(2):96-103. PubMed ID: 7258721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic release of fluoride from halothane. Relationship to the binding of halothane metabolites to hepatic cellular constituents.
    Van Dyke RA; Gandolf AJ
    Drug Metab Dispos; 1976; 4(1):40-4. PubMed ID: 3400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of piperonyl butoxide on halothane hepatotoxicity and metabolism in the hyperthyroid rat.
    Smith AC; Roberts SM; Berman LM; Harbison RD; James RC
    Toxicology; 1988 Jun; 50(1):95-105. PubMed ID: 3388433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isoflurane and cytochrome b5 stimulation of 2-chloro-1,1-difluoroethene metabolism by reconstituted rat CYP2B1 and CYP2C6.
    Ronnenberg WC; Wang Y; Baker MT
    Biochem Pharmacol; 1995 Aug; 50(4):521-8. PubMed ID: 7646559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.
    Madan A; Parkinson A
    Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo.
    Uehleke H; Werner T
    Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reductive activation of HCFC-123 by methaemalbumin.
    Zanovello A; Ferrara R; Manno M
    Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450.
    Karashima D; Hirokata Y; Shigematsu A; Furukawa T
    J Pharmacol Exp Ther; 1977 Nov; 203(2):409-16. PubMed ID: 909072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of covalent binding from halothane metabolism in hepatic microsomes from phenobarbital-induced and hyperthyroid rats.
    Smith AC; Roberts SM; James RC; Berman LM; Harbison RD
    Xenobiotica; 1988 Aug; 18(8):991-1001. PubMed ID: 3188577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.
    Baker MT; Olson MJ; Wang Y; Ronnenberg WC; Johnson JT; Brady AN
    Drug Metab Dispos; 1995 Jan; 23(1):60-4. PubMed ID: 7720526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart.
    Huwyler J; Gut J
    Biochem Biophys Res Commun; 1992 May; 184(3):1344-9. PubMed ID: 1590796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.