These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6722932)

  • 21. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors affecting the formation of chlorotrifluoroethane and chlorodifluoroethylene from halothane.
    Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR; Lind RC
    Anesthesiology; 1981 May; 54(5):383-9. PubMed ID: 7224207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effect of gomisi on reductive metabolism of halothane.
    Jiaxiang N; Fujii K; Sato N; Yuge O
    J Appl Toxicol; 1993; 13(6):385-8. PubMed ID: 8288841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic dehalogenation of halothane showing different substrate dependency from anaerobic dehalogenation in liver microsomes of guinea pig.
    Nakao M; Fujii K; Kinoshita H; Yuge O; Morio M
    Hiroshima J Med Sci; 1991 Mar; 40(1):23-8. PubMed ID: 1864763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reductive metabolism of halothane in children.
    Plummer JL; Van der Walt JH; Cousins MJ
    Anaesth Intensive Care; 1984 Nov; 12(4):293-5. PubMed ID: 6517287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanism of the suicidal reductive inactivation of microsomal cytochrome P-450 by halothane.
    Manno M; Cazzaro S; Rezzadore M
    Arch Toxicol; 1991; 65(3):191-8. PubMed ID: 2053846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibitory effects of corticoids on reductive halothane dehalogenation.
    Fujii K
    Drug Metabol Drug Interact; 1995; 12(1):37-43. PubMed ID: 7555000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-course of formation of volatile reductive metabolites of halothane in humans and an animal model.
    Gourlay GK; Adams JF; Cousins MJ; Sharp JH
    Br J Anaesth; 1980 Mar; 52(3):331-6. PubMed ID: 7370149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of volatile halothane metabolites in biological tissues by gas chromatography.
    Maiorino RM; Sipes IG; Gandolfi AJ; Brown BR
    J Chromatogr; 1979 Sep; 164(1):63-72. PubMed ID: 541398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic differences in reductive metabolism and hepatotoxicity of halothane in three rat strains.
    Gourlay GK; Adams JF; Cousins MJ; Hall P
    Anesthesiology; 1981 Aug; 55(2):96-103. PubMed ID: 7258721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic release of fluoride from halothane. Relationship to the binding of halothane metabolites to hepatic cellular constituents.
    Van Dyke RA; Gandolf AJ
    Drug Metab Dispos; 1976; 4(1):40-4. PubMed ID: 3400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of piperonyl butoxide on halothane hepatotoxicity and metabolism in the hyperthyroid rat.
    Smith AC; Roberts SM; Berman LM; Harbison RD; James RC
    Toxicology; 1988 Jun; 50(1):95-105. PubMed ID: 3388433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isoflurane and cytochrome b5 stimulation of 2-chloro-1,1-difluoroethene metabolism by reconstituted rat CYP2B1 and CYP2C6.
    Ronnenberg WC; Wang Y; Baker MT
    Biochem Pharmacol; 1995 Aug; 50(4):521-8. PubMed ID: 7646559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations.
    Madan A; Parkinson A
    Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo.
    Uehleke H; Werner T
    Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reductive activation of HCFC-123 by methaemalbumin.
    Zanovello A; Ferrara R; Manno M
    Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The in vitro metabolism of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) by hepatic microsomal cytochrome P-450.
    Karashima D; Hirokata Y; Shigematsu A; Furukawa T
    J Pharmacol Exp Ther; 1977 Nov; 203(2):409-16. PubMed ID: 909072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of covalent binding from halothane metabolism in hepatic microsomes from phenobarbital-induced and hyperthyroid rats.
    Smith AC; Roberts SM; James RC; Berman LM; Harbison RD
    Xenobiotica; 1988 Aug; 18(8):991-1001. PubMed ID: 3188577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isoflurane-chlorodifluoroethene interaction in human liver microsomes. Role of cytochrome P4502B6 in potentiation of haloethene metabolism.
    Baker MT; Olson MJ; Wang Y; Ronnenberg WC; Johnson JT; Brady AN
    Drug Metab Dispos; 1995 Jan; 23(1):60-4. PubMed ID: 7720526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart.
    Huwyler J; Gut J
    Biochem Biophys Res Commun; 1992 May; 184(3):1344-9. PubMed ID: 1590796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.