BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 6723471)

  • 1. The interrelationships between serotonin production and locomotion in different light regimes in southwestern Michigan opilionids, Leiobunum longipes.
    Fowler DJ; Gaines J
    Chronobiologia; 1984; 11(1):1-9. PubMed ID: 6723471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daily expression patterns for mRNAs of GH, PRL, SL, IGF-I and IGF-II in juvenile rabbitfish, Siganus guttatus, during 24-h light and dark cycles.
    Ayson FG; Takemura A
    Gen Comp Endocrinol; 2006 Dec; 149(3):261-8. PubMed ID: 16870184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin secretion in the Mashona mole-rat, Cryptomys darlingi--influence of light on rhythmicity.
    Vasicek CA; Malpaux B; Fleming PA; Bennett NC
    Physiol Behav; 2005 Jan; 83(5):689-97. PubMed ID: 15639153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian organization of a subarctic rodent, the northern red-backed vole (Clethrionomys rutilus).
    Tavernier RJ; Largen AL; Bult-Ito A
    J Biol Rhythms; 2004 Jun; 19(3):238-47. PubMed ID: 15155010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two morphological types of pineal window in catfish in relation to photophase and scotophase activity: a morphological and experimental study.
    Srivastava S
    J Exp Zool A Comp Exp Biol; 2003 Jan; 295(1):17-28. PubMed ID: 12506400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in melatonin binding sites under artificial light-dark, constant light and constant dark conditions in the masu salmon brain.
    Amano M; Iigo M; Kitamura S; Amiya N; Yamamori K
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Aug; 144(4):509-13. PubMed ID: 16759892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for studying behavioural activity patterns during long-term recordings using a force-plate actometer.
    Chiesa JJ; Araujo JF; Díez-Noguera A
    J Neurosci Methods; 2006 Nov; 158(1):157-68. PubMed ID: 16808976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous control of circadian rhythms of pheromone production in the turnip moth, Agrotis segetum.
    Rosén W
    Arch Insect Biochem Physiol; 2002 May; 50(1):21-30. PubMed ID: 11948972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythm of physiological color change in the amphibian Bufo ictericus under different photoperiods.
    Filadelfi AM; Vieira A; Louzada FM
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):370-5. PubMed ID: 16230040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of photoperiod on diel rhythms in serum melatonin, cortisol, glucose, and electrolytes in the common dentex, Dentex dentex.
    Pavlidis M; Greenwood L; Paalavuo M; Mölsä H; Laitinen JT
    Gen Comp Endocrinol; 1999 Feb; 113(2):240-50. PubMed ID: 10082626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss.
    Taylor JF; Migaud H; Porter MJ; Bromage NR
    Gen Comp Endocrinol; 2005 May; 142(1-2):169-85. PubMed ID: 15862561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twilight and photoperiod affect behavioral entrainment in the house mouse (Mus musculus).
    Comas M; Hut RA
    J Biol Rhythms; 2009 Oct; 24(5):403-12. PubMed ID: 19755585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D; Weinandy R; Gattermann R
    Physiol Behav; 2007 Feb; 90(2-3):325-33. PubMed ID: 17084868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian rhythms of locomotor activity in the Lesotho mole-rat, Cryptomys hottentotus subspecies from Sani Pass, South Africa.
    Schöttner K; Oosthuizen MK; Broekman M; Bennett NC
    Physiol Behav; 2006 Sep; 89(2):205-12. PubMed ID: 16872645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.