BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 6724134)

  • 21. Differentiation of avian retinotectal projection.
    Nakamura H; Ichijo H; Kobayashi T
    Neurosci Res Suppl; 1990; 13():S18-23. PubMed ID: 2175411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro studies on neural specificity.
    Roth S
    Natl Cancer Inst Monogr; 1978 May; (48):343-5. PubMed ID: 748754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.
    Vanselow J; Thanos S; Godement P; Henke-Fahle S; Bonhoeffer F
    Brain Res Dev Brain Res; 1989 Jan; 45(1):15-27. PubMed ID: 2917409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinal specificity in eye fragments: investigations on the retinotectal projections of different quarter-eyes in Xenopus laevis.
    Brändle K; Degen N
    Exp Brain Res; 1994; 102(2):272-86. PubMed ID: 7705505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Absence of topography in precociously innervated tecta.
    Chien CB; Cornel EM; Holt CE
    Development; 1995 Aug; 121(8):2621-31. PubMed ID: 7671824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development.
    Perez RG; Halfter W
    Perspect Dev Neurobiol; 1994; 2(1):75-87. PubMed ID: 7530146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Outgrowth and directional specificity of fibers from embryonic retinal transplants in the chick optic tectum.
    Thanos S; Dütting D
    Brain Res; 1987 Apr; 429(2):161-79. PubMed ID: 3567662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crossregulation between En-2 and Wnt-1 in chick tectal development.
    Sugiyama S; Funahashi J; Kitajewski J; Nakamura H
    Dev Growth Differ; 1998 Apr; 40(2):157-66. PubMed ID: 9572358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The developing chick isthmo-optic nucleus forms a transient efferent projection to the optic tectum.
    Wizenmann A; Thanos S
    Neurosci Lett; 1990 Jun; 113(3):241-6. PubMed ID: 2381560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corresponding spatial gradients of TOP molecules in the developing retina and optic tectum.
    Trisler D; Collins F
    Science; 1987 Sep; 237(4819):1208-9. PubMed ID: 3629237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina.
    Halfter W
    Dev Biol; 1996 Jul; 177(1):160-77. PubMed ID: 8660885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The developmental study on lamination of the optic tectum in relation to the retinotectal projection in chicks and chick embryos.
    Fujiwara A; Ohozone Y; Naito J
    J Vet Med Sci; 2000 May; 62(5):511-6. PubMed ID: 10852400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adhesive recognition and retinotectal specificity.
    Barbera AJ; Marchase RB; Roth S
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2482-6. PubMed ID: 4517660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum.
    Halfter W; Schurer B
    J Comp Neurol; 1998 Jul; 397(1):105-17. PubMed ID: 9671282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eye-specific segregation requires neural activity in three-eyed Rana pipiens.
    Reh TA; Constantine-Paton M
    J Neurosci; 1985 May; 5(5):1132-43. PubMed ID: 3873522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities.
    Couly GF; Le Douarin NM
    Dev Biol; 1987 Mar; 120(1):198-214. PubMed ID: 3817289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rostrocaudal polarity of the tectum in birds: correlation of en gradient and topographic order in retinotectal projection.
    Itasaki N; Nakamura H
    Neuron; 1992 Apr; 8(4):787-98. PubMed ID: 1348950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The avian inferior olive derives from the alar neuroepithelium of the rhombomeres 7 and 8: an analysis by using chick-quail chimeric embryos.
    Ambrosiani J; Armengol JA; Martinez S; Puelles L
    Neuroreport; 1996 May; 7(7):1285-8. PubMed ID: 8817550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinotectal projection after partial ablation of chick optic vesicles.
    Matsuno T; Itasaki N; Ichijo H; Nakamura H
    Neurosci Res; 1992 Oct; 15(1-2):96-101. PubMed ID: 1336590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.