These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 6724871)

  • 1. Use of isolated mitochondria to transfer chloramphenicol resistance in hamster cells.
    Ber R; Stauver MG; Shay JW
    Isr J Med Sci; 1984 Mar; 20(3):244-8. PubMed ID: 6724871
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells.
    Ziegler ML; Davidson RL
    J Cell Physiol; 1979 Mar; 98(3):627-35. PubMed ID: 438306
    [No Abstract]   [Full Text] [Related]  

  • 3. Transformation of cultured cells to chloramphenicol resistance by purified mammalian mitochondrial DNA.
    Coon HG; Ho C
    Brookhaven Symp Biol; 1977 May 12-20; (29):166-77. PubMed ID: 754863
    [No Abstract]   [Full Text] [Related]  

  • 4. Retention of mitochondrial DNA species in somatic cell hybrids using antibiotic selection.
    Solus JF; Eisenstadt JM
    Exp Cell Res; 1984 Apr; 151(2):299-305. PubMed ID: 6323197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial biosynthesis controls the sensitivity of Chinese hamster cells to hydrogen peroxide.
    Kaneko M; Kodama M; Inoue F; Terasaki T
    Free Radic Res; 1996 Apr; 24(4):299-309. PubMed ID: 8731014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of chloramphenicol- and 8-azaguanine-resistant mutants isolated from a continuous rat-liver epithelial cell line.
    Sudilovsky O; Friedman LR; Sudilovsky L
    Mutat Res; 1983 Feb; 107(2):433-45. PubMed ID: 6865990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete nucleotide sequence of Chinese hamster (Cricetulus griseus) mitochondrial DNA.
    Partridge MA; Davidson MM; Hei TK
    DNA Seq; 2007 Oct; 18(5):341-6. PubMed ID: 17654009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cybrid formation with recipient cell lines containing dominant phenotypes.
    Yatscoff RW; Mason JR; Patel HV; Freeman KB
    Somatic Cell Genet; 1981 Jan; 7(1):1-9. PubMed ID: 7013120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of heterogeneous mitochondrial populations in a mouse cell line: the effects of selection for or against mitochondrial genomes that confer chloramphenicol resistance.
    Kearsey SE; Munro E; Craig IW
    Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):315-23. PubMed ID: 2862632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin, cellular expression, and cybrid transmission of mitochondrial CAP-R, PYR-IND, and OLI-R mutant phenotypes.
    Howell N
    Somatic Cell Genet; 1983 Jan; 9(1):1-24. PubMed ID: 6836447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance.
    Kearsey SE; Craig IW
    Nature; 1981 Apr; 290(5807):607-8. PubMed ID: 7219548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [New Djungarian hamster cell lines with selective cytoplasmic and nuclear genetic markers].
    Kopnin BP; Lukas JJ
    Genetika; 1982; 18(8):1320-5. PubMed ID: 6957361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: implications for genotoxic mechanisms in mammalian cells.
    Partridge MA; Huang SX; Hernandez-Rosa E; Davidson MM; Hei TK
    Cancer Res; 2007 Jun; 67(11):5239-47. PubMed ID: 17545603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of chloramphenicol-resistant variants from a human cell line.
    Mitchell CH; England JM; Attardi G
    Somatic Cell Genet; 1975 Jul; 1(3):215-34. PubMed ID: 800292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the contribution of the mitochondrial genome to the growth of Chinese hamster embryo cells in culture.
    Morais R; Guertin D; Kornblatt JA
    Can J Biochem; 1982 Mar; 60(3):290-4. PubMed ID: 6282420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial protein synthesis in interspecific somatic cell hybrids.
    Zuckerman SH; Gillespie FP; Solus JF; Rybczynski R; Eisenstadt JM
    Somat Cell Mol Genet; 1986 Sep; 12(5):449-58. PubMed ID: 3464102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of the nucleus and the cytoplasm in determining the change in the permeability for colchichine of the plasma membrane of mouse cells].
    Kopnin BP; Lukas JJ
    Genetika; 1982; 18(8):1312-9. PubMed ID: 6957360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of progesterone in the mitochondrial size in the uterine glands of the rat mouse, hamster, and guinea-pig.
    Nilsson O
    Acta Endocrinol (Copenh); 1975 Feb; 78(2):349-52. PubMed ID: 1172905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mitochondrial DNA transmitted cytoplasmically from nontumorigenic to tumorigenic rat cells on the phenotypic expression of tumorigenicity.
    Hayashi J; Tagashira Y; Watanabe T; Yoshida MC
    Cancer Res; 1984 Sep; 44(9):3957-60. PubMed ID: 6744311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA.
    Marchetti P; Susin SA; Decaudin D; Gamen S; Castedo M; Hirsch T; Zamzami N; Naval J; Senik A; Kroemer G
    Cancer Res; 1996 May; 56(9):2033-8. PubMed ID: 8616847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.