These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 6725249)
1. Flux of catecholamines through chromaffin vesicles in cultured bovine adrenal medullary cells. Corcoran JJ; Wilson SP; Kirshner N J Biol Chem; 1984 May; 259(10):6208-14. PubMed ID: 6725249 [TBL] [Abstract][Full Text] [Related]
2. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules. Kanner BI; Fishkes H; Maron R; Sharon I; Schuldiner S FEBS Lett; 1979 Apr; 100(1):175-8. PubMed ID: 437101 [No Abstract] [Full Text] [Related]
3. Effects of ascorbic acid, dexamethasone, and insulin on the catecholamine and opioid peptide stores of cultured adrenal medullary chromaffin cells. Wilson SP; Kirshner N J Neurosci; 1983 Oct; 3(10):1971-8. PubMed ID: 6352871 [TBL] [Abstract][Full Text] [Related]
4. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells. Holz RW; Senter RA J Neurochem; 1985 Nov; 45(5):1548-57. PubMed ID: 3876408 [TBL] [Abstract][Full Text] [Related]
5. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla. Carmichael SW; Weber A; Winkler H J Neurochem; 1980 Jul; 35(1):270-2. PubMed ID: 7452257 [TBL] [Abstract][Full Text] [Related]
6. Catecholamine transport by isolated chromaffin granules. Influence of MgATP and a disulfonic stilbene on (R)-norepinephrine/epinephrine exchange and spontaneous epinephrine efflux. Ramu A; Pazoles CJ; Creutz CE; Pollard HB J Biol Chem; 1981 Feb; 256(3):1229-34. PubMed ID: 7451502 [No Abstract] [Full Text] [Related]
7. Inhibition of norepinephrine transport and reserpine binding by reserpine derivatives. Parti R; Ozkan ED; Harnadek GJ; Njus D J Neurochem; 1987 Mar; 48(3):949-53. PubMed ID: 3806108 [TBL] [Abstract][Full Text] [Related]
8. Effects of reserpine and tetrabenazine on catecholamine and ATP storage in cultured bovine adrenal medullary chromaffin cells. Caughey B; Kirshner N J Neurochem; 1987 Aug; 49(2):563-73. PubMed ID: 3598586 [TBL] [Abstract][Full Text] [Related]
9. Amine transport in chromaffin granule ghosts. pH dependence implies cationic form is translocated. Knoth J; Isaacs JM; Njus D J Biol Chem; 1981 Jul; 256(13):6541-3. PubMed ID: 7240227 [TBL] [Abstract][Full Text] [Related]
10. Proportional secretion of opioid peptides and catecholamines from adrenal chromaffin cells in culture. Wilson SP; Chang KJ; Viveros OH J Neurosci; 1982 Aug; 2(8):1150-6. PubMed ID: 7108586 [TBL] [Abstract][Full Text] [Related]
11. Newly synthesized dopamine as the precursor for norepinephrine synthesis in bovine adrenomedullary chromaffin cells. Menniti FS; Diliberto EJ J Neurochem; 1989 Sep; 53(3):890-7. PubMed ID: 2760625 [TBL] [Abstract][Full Text] [Related]
12. Stimulatory effect of ascorbic acid on norepinephrine biosynthesis in digitonin-permeabilized adrenal medullary chromaffin cells. Morita K; Levine M; Pollard HB J Neurochem; 1986 Mar; 46(3):939-45. PubMed ID: 3485180 [TBL] [Abstract][Full Text] [Related]
13. Reserpic acid as an inhibitor of norepinephrine transport into chromaffin vesicle ghosts. Chaplin L; Cohen AH; Huettl P; Kennedy M; Njus D; Temperley SJ J Biol Chem; 1985 Sep; 260(20):10981-5. PubMed ID: 4030777 [TBL] [Abstract][Full Text] [Related]
14. Neural regulation of adrenal chromaffin cell function in the mouse--stress effect on the distribution of [3H]dopamine in denervated adrenal medulla. Hirano T Brain Res; 1982 Apr; 238(1):45-54. PubMed ID: 7083024 [TBL] [Abstract][Full Text] [Related]
15. Evidence against co-storage of enkephalins with noradrenaline in bovine adrenal medullary granules. Lang RE; Taugner G; Gaida W; Ganten D; Kraft K; Unger T; Wunderlich I Eur J Pharmacol; 1982 Dec; 86(1):117-20. PubMed ID: 7160428 [TBL] [Abstract][Full Text] [Related]
16. On the uptake and storage of 5-hydroxytryptamine, 5-hydroxytryptophan and catecholamines by adrenal chromaffin cells and nerve endings. Kent C; Coupland RE Cell Tissue Res; 1984; 236(1):189-95. PubMed ID: 6608993 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of the effect of droperidol to induce catecholamine efflux from the adrenal medulla. Sumikawa K; Hirano H; Amakata Y; Kashimoto T; Wada A; Izumi F Anesthesiology; 1985 Jan; 62(1):17-22. PubMed ID: 3966665 [TBL] [Abstract][Full Text] [Related]
18. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. Levine M; Morita K; Heldman E; Pollard HB J Biol Chem; 1985 Dec; 260(29):15598-603. PubMed ID: 3877726 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of the catecholamine transporter in bovine chromaffin granules using [3H]reserpine. Deupree JD; Weaver JA J Biol Chem; 1984 Sep; 259(17):10907-12. PubMed ID: 6469989 [TBL] [Abstract][Full Text] [Related]
20. Differences between the mechanisms of adrenaline and noradrenaline secretion from isolated, bovine, adrenal chromaffin cells. Marley PD; Livett BG Neurosci Lett; 1987 Jun; 77(1):81-6. PubMed ID: 3601219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]