BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6725266)

  • 1. Geminate combination of oxygen with iron-cobalt hybrid hemoglobins.
    Morris RJ; Gibson QH; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1984 Jun; 259(11):6701-3. PubMed ID: 6725266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanosecond optical spectra of iron-cobalt hybrid hemoglobins: geminate recombination, conformational changes, and intersubunit communication.
    Hofrichter J; Henry ER; Sommer JH; Deutsch R; Ikeda-Saito M; Yonetani T; Eaton WA
    Biochemistry; 1985 May; 24(11):2667-79. PubMed ID: 4027219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins. Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme.
    Shibayama N; Morimoto H; Kitagawa T
    J Mol Biol; 1986 Nov; 192(2):331-6. PubMed ID: 3560220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geminate reactions of oxygen and nitric oxide with the alpha and beta subunits of Fe-Co hybrid hemoglobins.
    Gibson QH; Ikeda-Saito M; Yonetani T
    J Biol Chem; 1985 Nov; 260(26):14126-31. PubMed ID: 4055773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen equilibrium study and light absorption spectra of Ni(II)-Fe(II) hybrid hemoglobins.
    Shibayama N; Morimoto H; Miyazaki G
    J Mol Biol; 1986 Nov; 192(2):323-9. PubMed ID: 3560219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen equilibrium and electron paramagnetic resonance studies on copper(II)-iron(II) hybrid hemoglobins at room temperature.
    Shibayama N; Ikeda-Saito M; Hori H; Itaroku K; Morimoto H; Saigo S
    FEBS Lett; 1995 Sep; 372(1):126-30. PubMed ID: 7556632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of ligand binding to Ni(II)-Fe(II) hybrid hemoglobins.
    Shibayama N; Yonetani T; Regan RM; Gibson QH
    Biochemistry; 1995 Nov; 34(45):14658-67. PubMed ID: 7578073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient kinetics of oxygen dissociation from ferrous subunits of iron-cobalt hybrid hemoglobins. The principal reaction controlling the co-operativity.
    Kitagishi K; Ikeda-Saito M; Yonetani T
    J Mol Biol; 1988 Oct; 203(4):1119-26. PubMed ID: 3210238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The porphyrin-iron hybrid hemoglobins. Absence of the Fe-His bonds in one type of subunits favors a deoxy-like structure with low oxygen affinity.
    Fujii M; Hori H; Miyazaki G; Morimoto H; Yonetani T
    J Biol Chem; 1993 Jul; 268(21):15386-93. PubMed ID: 8340369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on cobalt myoglobins and hemoglobins. Preparation of isolated chains containing cobaltous protoporphyrin IX and characterization of their equilibrium and kinetic properties of oxygenation and EPR spectra.
    Ikeda-Saito M; Yamamoto H; Imai K; Kayne FJ; Yonetani T
    J Biol Chem; 1977 Jan; 252(2):620-4. PubMed ID: 188820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron paramagnetic resonance studies on cobalt hemoglobin, iron-cobalt hybrid hemoglobins, and their related model complexes. Characterization of proximal histidine binding to porphyrin cobalt(II) ion and its transition associated with subunit interaction.
    Inubushi T; Yonetani T
    Biochemistry; 1983 Apr; 22(8):1894-900. PubMed ID: 6303396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium-iron hybrid hemoglobins as a model for partially liganded hemoglobin: oxygen equilibrium curves and resonance Raman spectra.
    Ishimori K; Tsuneshige A; Imai K; Morishima I
    Biochemistry; 1989 Oct; 28(21):8603-9. PubMed ID: 2605210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational effects at the subunit interfaces of human hemoglobin: evidence for a unique sensitivity of the T quaternary state to changes in the hinge region of the alpha 1 beta 2 interface.
    Noble RW; Hui HL; Kwiatkowski LD; Paily P; DeYoung A; Wierzba A; Colby JE; Bruno S; Mozzarelli A
    Biochemistry; 2001 Oct; 40(41):12357-68. PubMed ID: 11591155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on cobalt myoglobins and hemoglobins. The effect of the removal of the alpha-141 arginine residue on the functional and electronic properties of iron-cobalt hybrid hemoglobins.
    Ikeda-Saito M
    J Biol Chem; 1980 Sep; 255(18):8497-502. PubMed ID: 7410373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model compounds for the T state of hemoglobin.
    Collman JP; Brauman JI; Doxsee KM; Halbert TR; Suslick KS
    Proc Natl Acad Sci U S A; 1978 Feb; 75(2):564-8. PubMed ID: 273219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand recombination to the alpha and beta subunits of human hemoglobin.
    Olson JS; Rohlfs RJ; Gibson QH
    J Biol Chem; 1987 Sep; 262(27):12930-8. PubMed ID: 3654596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of cobalt--iron hybrid hemoglobins.
    Oertle M; Winterhalter KH; Di Iorio EE
    FEBS Lett; 1983 Mar; 153(1):213-6. PubMed ID: 6825860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate constants for O2 and CO binding to the alpha and beta subunits within the R and T states of human hemoglobin.
    Unzai S; Eich R; Shibayama N; Olson JS; Morimoto H
    J Biol Chem; 1998 Sep; 273(36):23150-9. PubMed ID: 9722544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Phenylprotoporphyrin IX formation in the hemoglobin-phenylhydrazine reaction. Evidence for a protein-stabilized iron-phenyl intermediate.
    Augusto O; Kunze KL; Ortiz de Montellano PR
    J Biol Chem; 1982 Jun; 257(11):6231-41. PubMed ID: 7076671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.