These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6725292)

  • 1. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part II. Rhesus monkey intervertebral joints.
    Kaleps I; Kazarian LE; Burns ML
    J Biomech; 1984; 17(2):131-6. PubMed ID: 6725292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part I. Human intervertebral joints.
    Burns ML; Kaleps I; Kazarian LE
    J Biomech; 1984; 17(2):113-30. PubMed ID: 6725291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc.
    Furlong DR; Palazotto AN
    J Biomech; 1983; 16(10):785-95. PubMed ID: 6643516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading.
    Keller TS; Spengler DM; Hansson TH
    J Orthop Res; 1987; 5(4):467-78. PubMed ID: 3681521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhesus monkey intervertebral disk viscoelastic response to shear stress.
    Kelley BS; Lafferty JF; Bowman DA; Clark PA
    J Biomech Eng; 1983 Feb; 105(1):51-4. PubMed ID: 6843102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs.
    MacLean JJ; Owen JP; Iatridis JC
    J Biomech; 2007; 40(1):55-63. PubMed ID: 16427060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep experimental study on the lumbar intervertebral disk under vibration compression load.
    Yang X; Cheng X; Luan Y; Liu Q; Zhang C
    Proc Inst Mech Eng H; 2019 Aug; 233(8):858-867. PubMed ID: 31203788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poroelastic dynamic structural models of rhesus spinal motion segments.
    Simon BR; Wu JS; Carlton MW; Kazarian LE; France EP; Evans JH; Zienkiewicz OC
    Spine (Phila Pa 1976); 1985; 10(6):494-507. PubMed ID: 4081864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions.
    Keller TS; Holm SH; Hansson TH; Spengler DM
    Spine (Phila Pa 1976); 1990 Aug; 15(8):751-61. PubMed ID: 2237625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk.
    Simon BR; Wu JS; Carlton MW; Evans JH; Kazarian LE
    J Biomech Eng; 1985 Nov; 107(4):327-35. PubMed ID: 4079359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep bulging deformation of intervertebral disc under axial compression.
    Pei BQ; Li H; Li DY; Fan YB; Wang C; Wu SQ
    Biomed Mater Eng; 2014; 24(1):191-8. PubMed ID: 24211898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.