These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6725294)

  • 1. Design of a system for the accelerated loading of heart valve prostheses.
    Rousseau EP; van de Ven AP; van Steenhoven AA; Seroo JM
    J Biomech; 1984; 17(2):145-53. PubMed ID: 6725294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro closing behaviour of Björk-Shiley, St Jude and Hancock heart valve prostheses in relation to the in vivo recorded aortic valve closure.
    van Steenhoven AA; van Duppen TJ; Cauwenberg JW; van Renterghem RJ
    J Biomech; 1982; 15(11):841-8. PubMed ID: 7161286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six month postoperative hemodynamics of the Hancock heterograft and the Björk-Shiley prosthesis: results of a Veterans Administration cooperative prospective randomized trial.
    Khuri SF; Folland ED; Sethi GK; Souchek J; Oprian C; Wong M; Burchfiel C; Henderson WG; Hammermeister KE
    J Am Coll Cardiol; 1988 Jul; 12(1):8-18. PubMed ID: 3288680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Doppler echocardiography in assessing mechanical and biological heart valve prostheses].
    Minardi G; Di Segni M; Boccardi L; Ferrari O; Giovannini E
    G Ital Cardiol; 1988 Feb; 18(2):121-34. PubMed ID: 3410201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro comparison between the hydrodynamic characteristics of the Hancock 250 (modified orifice) xenografts and the Björk-Shiley aortic valve prostheses.
    Wright JT
    Trans Am Soc Artif Intern Organs; 1977; 23():89-94. PubMed ID: 910416
    [No Abstract]   [Full Text] [Related]  

  • 6. Aortic valve replacement with the Hancock standard, Björk-Shiley, and Lillehei-Kaster prostheses. A comparison based on follow-up from 1 to 15 years.
    Milano AD; Bortolotti U; Mazzucco A; Guerra F; Magni A; Gallucci V
    J Thorac Cardiovasc Surg; 1989 Jul; 98(1):37-47. PubMed ID: 2739424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doppler hemodynamic evaluation of prosthetic (Starr-Edwards and Björk-Shiley) and bioprosthetic (Hancock and Carpentier-Edwards) cardiac valves.
    Williams GA; Labovitz AJ
    Am J Cardiol; 1985 Aug; 56(4):325-32. PubMed ID: 4025173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrodynamic function and leaflet dynamics of aortic and pulmonary roots and valves: an in vitro study.
    Weerasena N; Lockie KJ; Butterfield M; Fisher J; Kearney JN; Davies GA
    Eur J Cardiothorac Surg; 1992; 6(7):350-6. PubMed ID: 1497926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid dynamic models as a guide to determine prosthetic heart valve diameter.
    Fumero R; Pietrabissa R
    J Biomech; 1986; 19(1):71-7. PubMed ID: 3949817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the hydrodynamic function of the CarboMedics valve.
    Butterfield M; Fisher J; Davies GA; Spyt TJ
    Ann Thorac Surg; 1991 Oct; 52(4):815-20. PubMed ID: 1929635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal and abnormal prosthetic valve function as assessed by Doppler echocardiography.
    Panidis IP; Ross J; Mintz GS
    J Am Coll Cardiol; 1986 Aug; 8(2):317-26. PubMed ID: 2942593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doppler echocardiographic evaluation of Hancock and Björk-Shiley prosthetic values.
    Sagar KB; Wann LS; Paulsen WH; Romhilt DW
    J Am Coll Cardiol; 1986 Mar; 7(3):681-7. PubMed ID: 3950245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A prospective evaluation of the Björk-Shiley, Hancock, and Carpentier-Edwards heart valve prostheses.
    Bloomfield P; Kitchin AH; Wheatley DJ; Walbaum PR; Lutz W; Miller HC
    Circulation; 1986 Jun; 73(6):1213-22. PubMed ID: 3516447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative analysis of long-term results with porcine-aortic, bovine pericardial and tilting disc valves].
    Kawazoe K; Kawaguchi O; Kosakai Y; Ohara K; Kito Y; Fujita T
    Nihon Geka Gakkai Zasshi; 1989 Sep; 90(9):1534-7. PubMed ID: 2586460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel pulse duplicator system: evaluation of different valve prostheses.
    Haaf P; Steiner M; Attmann T; Pfister G; Cremer J; Lutter G
    Thorac Cardiovasc Surg; 2009 Feb; 57(1):10-7. PubMed ID: 19169990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation: a diagnostic method in comparative studies of valve prostheses.
    Engelman MS; Moskowitz SE; Borman JB
    J Thorac Cardiovasc Surg; 1980 Mar; 79(3):402-12. PubMed ID: 7354636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve.
    Kemp I; Dellimore K; Rodriguez R; Scheffer C; Blaine D; Weich H; Doubell A
    Australas Phys Eng Sci Med; 2013 Sep; 36(3):363-73. PubMed ID: 23907849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of prosthetic heart valves: anomalies and limitations.
    Tindale WB; Black MM; Martin TR
    Clin Phys Physiol Meas; 1982 May; 3(2):115-30. PubMed ID: 7116789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Long-term follow-up of aortic or mitral valve replacement. Comparison of results following implantation of a mechanical or biological artificial valve].
    Mudra H; Rudolph W
    Herz; 1986 Apr; 11(2):97-115. PubMed ID: 3699678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro flow dynamics of four prosthetic aortic valves: a comparative analysis.
    Hanle DD; Harrison EC; Yoganathan AP; Allen DT; Corcoran WH
    J Biomech; 1989; 22(6-7):597-607. PubMed ID: 2808443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.