BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 6725396)

  • 1. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs.
    Karsenti E; Newport J; Hubble R; Kirschner M
    J Cell Biol; 1984 May; 98(5):1730-45. PubMed ID: 6725396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase.
    Karsenti E; Newport J; Kirschner M
    J Cell Biol; 1984 Jul; 99(1 Pt 2):47s-54s. PubMed ID: 6235234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parthenogenesis in Xenopus eggs requires centrosomal integrity.
    Klotz C; Dabauvalle MC; Paintrand M; Weber T; Bornens M; Karsenti E
    J Cell Biol; 1990 Feb; 110(2):405-15. PubMed ID: 2298811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs.
    Schatten H; Schatten G; Mazia D; Balczon R; Simerly C
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):105-9. PubMed ID: 2417231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes.
    Karsenti E; Kobayashi S; Mitchison T; Kirschner M
    J Cell Biol; 1984 May; 98(5):1763-76. PubMed ID: 6725398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization.
    Heald R; Tournebize R; Habermann A; Karsenti E; Hyman A
    J Cell Biol; 1997 Aug; 138(3):615-28. PubMed ID: 9245790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition.
    Snyder JA; Hamilton BT; Mullins JM
    Eur J Cell Biol; 1982 Jun; 27(2):191-9. PubMed ID: 7117266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity.
    Walczak CE; Vernos I; Mitchison TJ; Karsenti E; Heald R
    Curr Biol; 1998 Jul 30-Aug 13; 8(16):903-13. PubMed ID: 9707401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies.
    Heidemann SR; Kirschner MW
    J Cell Biol; 1975 Oct; 67(1):105-17. PubMed ID: 1236852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes.
    Gaglio T; Dionne MA; Compton DA
    J Cell Biol; 1997 Sep; 138(5):1055-66. PubMed ID: 9281583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle.
    Kuriyama R; Borisy GG
    J Cell Biol; 1981 Dec; 91(3 Pt 1):822-6. PubMed ID: 7328124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two protein 4.1 domains essential for mitotic spindle and aster microtubule dynamics and organization in vitro.
    Krauss SW; Lee G; Chasis JA; Mohandas N; Heald R
    J Biol Chem; 2004 Jun; 279(26):27591-8. PubMed ID: 15102852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila centrosomes are unable to trigger parthenogenetic development of Xenopus eggs.
    Tournier F; Bobinnec Y; Debec A; Santamaria P; Bornens M
    Biol Cell; 1999 Mar; 91(2):99-108. PubMed ID: 10399825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster.
    Waters JC; Cole RW; Rieder CL
    J Cell Biol; 1993 Jul; 122(2):361-72. PubMed ID: 8320259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of noncentrosomal microtubules to spindle assembly in Drosophila spermatocytes.
    Rebollo E; Llamazares S; Reina J; Gonzalez C
    PLoS Biol; 2004 Jan; 2(1):E8. PubMed ID: 14758368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the microtubule nucleating activity of centrosomes in Xenopus egg extracts: role of cyclin A-associated protein kinase.
    Buendia B; Draetta G; Karsenti E
    J Cell Biol; 1992 Mar; 116(6):1431-42. PubMed ID: 1531830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The centrosome cycle in the mitotic cycle of sea urchin eggs.
    Paweletz N; Mazia D; Finze EM
    Exp Cell Res; 1984 May; 152(1):47-65. PubMed ID: 6538848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.
    Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M
    J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. XMAP215 is required for the microtubule-nucleating activity of centrosomes.
    Popov AV; Severin F; Karsenti E
    Curr Biol; 2002 Aug; 12(15):1326-30. PubMed ID: 12176362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.