These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6725410)

  • 1. Freeze-fracture and electrophysiological studies of newly developed acetylcholine receptors in Xenopus embryonic muscle cells.
    Bridgman PC; Nakajima S; Greenberg AS; Nakajima Y
    J Cell Biol; 1984 Jun; 98(6):2160-73. PubMed ID: 6725410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane lipid heterogeneity associated with acetylcholine receptor particle aggregates in Xenopus embryonic muscle cells.
    Bridgman PC; Nakajima Y
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):1278-82. PubMed ID: 6940140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of filipin-sterol complexes on cultured muscle cells: cell-substratum contact areas associated with acetylcholine receptor clusters.
    Bridgman PC; Nakajima Y
    J Cell Biol; 1983 Feb; 96(2):363-72. PubMed ID: 6833360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the postsynaptic membrane in Xenopus neuromuscular cultures observed by freeze-fracture and thin-section electron microscopy.
    Peng HB; Nakajima Y; Bridgman PC
    Brain Res; 1980 Aug; 196(1):11-31. PubMed ID: 7397516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clusters of intramembranous particles on cultured myotubes at sites that are highly sensitive to acetylcholine.
    Yee AG; Fischbach GD; Karnovsky MJ
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):3004-8. PubMed ID: 96446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells.
    Peng HB; Nakajima Y
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):500-4. PubMed ID: 272667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption and reformation of the acetylcholine receptor clusters of cultured rat myotubes occur in two distinct stages.
    Pumplin DW; Bloch RJ
    J Cell Biol; 1987 Jan; 104(1):97-108. PubMed ID: 3793764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential development of two classes of acetylcholine receptors in Xenopus muscle in culture.
    Leonard RJ; Nakajima S; Nakajima Y; Takahashi T
    Science; 1984 Oct; 226(4670):55-7. PubMed ID: 6474189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A correlation of the alpha-bungarotoxin binding sites (acetylcholine receptors) and intramembranous particles in denervated skeletal muscle of rat.
    Tipnis UR; Malhotra SK
    Cytobios; 1981; 31(122):91-106. PubMed ID: 7318510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel open time of acetylcholine receptors on Xenopus muscle cells in dissociated cell culture.
    Brehm P; Steinbach JH; Kidokoro Y
    Dev Biol; 1982 May; 91(1):93-102. PubMed ID: 6284571
    [No Abstract]   [Full Text] [Related]  

  • 11. (Na+ + K+)-ATPase correlated with a major group of intramembrane particles in freeze-fracture replicas of cultured chick myotubes.
    Pumplin DW; Fambrough DM
    J Cell Biol; 1983 Oct; 97(4):1214-25. PubMed ID: 6311841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields.
    Luther PW; Peng HB
    J Cell Biol; 1985 Jan; 100(1):235-44. PubMed ID: 3965472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nerve on the formation and survival of acetylcholine receptor and cholinesterase patches on embryonic Xenopus muscle cells in culture.
    Moody-Corbett F; Cohen MW
    J Neurosci; 1982 May; 2(5):633-46. PubMed ID: 7077370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusely distributed acetylcholine receptors can participate in cluster formation on cultured rat myotubes.
    Stya M; Axelrod D
    Proc Natl Acad Sci U S A; 1983 Jan; 80(2):449-53. PubMed ID: 6572902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural organization of developing acetylcholine receptor aggregates.
    Kunkel DD; Stollberg J
    J Neurobiol; 1997 Jun; 32(6):613-26. PubMed ID: 9183741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-bungarotoxin binding sites (acetylcholine receptors) in denervated mammalian sarcolemma.
    Tipnis UR; Malhotra SK
    J Supramol Struct; 1979; 12(3):321-34. PubMed ID: 547118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses.
    Frank E; Fischbach GD
    J Cell Biol; 1979 Oct; 83(1):143-58. PubMed ID: 511937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes.
    Cohen SA; Pumplin DW
    J Cell Biol; 1979 Aug; 82(2):494-516. PubMed ID: 479313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of intracellular acetylcholine receptors and nuclei in avian slow muscle fibres during establishment of distributed synapses.
    Kouts S; Bennett MR
    J Neurocytol; 1990 Jun; 19(3):421-31. PubMed ID: 2391541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the open time and conductance of acetylcholine receptors in aneural cultured Xenopus myocytes treated with cycloheximide or tunicamycin.
    Carlson CG; Leonard RJ
    Brain Res Dev Brain Res; 1989 Mar; 46(1):61-8. PubMed ID: 2468433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.