BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6725430)

  • 1. Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex.
    Harris RJ; Symon L
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):178-86. PubMed ID: 6725430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in extracellular calcium activity in cerebral ischaemia.
    Harris RJ; Symon L; Branston NM; Bayhan M
    J Cereb Blood Flow Metab; 1981; 1(2):203-9. PubMed ID: 7328140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH, K+, and PO2 of the extracellular space during ischaemia of primate cerebral cortex.
    Harris RJ; Richards PG; Symon L; Habib AH; Rosenstein J
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):599-604. PubMed ID: 3654800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation.
    Mutch WA; Hansen AJ
    J Cereb Blood Flow Metab; 1984 Mar; 4(1):17-27. PubMed ID: 6693512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral extracellular calcium activity in severe hypoglycemia: relation to extracellular potassium and energy state.
    Harris RJ; Wieloch T; Symon L; Siesjö BK
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):187-93. PubMed ID: 6725431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial stability of extracellular potassium ion and blood flow distribution in rat cerebral cortex after permanent middle cerebral artery occlusion.
    Sick TJ; Feng ZC; Rosenthal M
    J Cereb Blood Flow Metab; 1998 Oct; 18(10):1114-20. PubMed ID: 9778188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of resolution of transient increases in extracellular potassium activity: relationships to regional blood flow in primate cerebral cortex.
    Branston NM; Strong AJ; Symon L
    Neurol Res; 1982; 4(1-2):1-19. PubMed ID: 6127641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ischemia-induced changes in the extracellular space diffusion parameters, K+, and pH in the developing rat cortex and corpus callosum.
    Vorísek I; Syková E
    J Cereb Blood Flow Metab; 1997 Feb; 17(2):191-203. PubMed ID: 9040499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation-evoked changes in extracellular pH, calcium and potassium activity in the frog spinal cord.
    Chvátal A; Jendelová P; Kríz N; Syková E
    Physiol Bohemoslov; 1988; 37(3):203-12. PubMed ID: 2975788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular potassium activity, evoked potential and tissue blood flow. Relationships during progressive ischaemia in baboon cerebral cortex.
    Branston NM; Strong AJ; Symon L
    J Neurol Sci; 1977 Jul; 32(3):305-21. PubMed ID: 407332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiles of cortical tissue depolarization in cat focal cerebral ischemia in relation to calcium ion homeostasis and nitric oxide production.
    Ohta K; Graf R; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1997 Nov; 17(11):1170-81. PubMed ID: 9390649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood to brain sodium transport and interstitial fluid potassium concentration during early focal ischemia in the rat.
    Schielke GP; Moises HC; Betz AL
    J Cereb Blood Flow Metab; 1991 May; 11(3):466-71. PubMed ID: 1849910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats.
    Nilsson P; Hillered L; Olsson Y; Sheardown MJ; Hansen AJ
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):183-92. PubMed ID: 8436609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of MK-801 on brain extracellular calcium and potassium activities in severe hypoglycemia.
    Zhang ET; Hansen AJ; Wieloch T; Lauritzen M
    J Cereb Blood Flow Metab; 1990 Jan; 10(1):136-9. PubMed ID: 2404997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex.
    Hansen AJ; Zeuthen T
    Acta Physiol Scand; 1981 Dec; 113(4):437-45. PubMed ID: 7348028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion changes in spreading ischaemia induce rat middle cerebral artery constriction in the absence of NO.
    Windmüller O; Lindauer U; Foddis M; Einhäupl KM; Dirnagl U; Heinemann U; Dreier JP
    Brain; 2005 Sep; 128(Pt 9):2042-51. PubMed ID: 15901647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular alkaline-acid-alkaline transients in the rat spinal cord evoked by peripheral stimulation.
    Syková E; Svoboda J
    Brain Res; 1990 Apr; 512(2):181-9. PubMed ID: 2354355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral extracellular potassium concentration change and cerebral impedance change in short-term ischemia in gerbil.
    Yamaguchi T
    Bull Tokyo Med Dent Univ; 1986 Mar; 33(1):1-8. PubMed ID: 3457643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes of extracellular potassium concentration in the cortex and brain stem during the acute phase of experimental closed head injury (author's transl)].
    Takahashi H; Manaka S; Sano K
    No To Shinkei; 1981 Apr; 33(4):365-76. PubMed ID: 7196250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes during ischaemia in extracellular potassium ion concentration of the brain under nitrous oxide or hexobarbital-sodium anaesthesia and moderate hypothermia.
    Lantos J; Temes G; Török B
    Acta Physiol Hung; 1986; 67(1):141-53. PubMed ID: 3705976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.