BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6725430)

  • 21. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. III. Changes following ischaemia.
    Allen K; Busza AL; Crockard HA; Frackowiak RS; Gadian DG; Proctor E; Russell RW; Williams SR
    J Cereb Blood Flow Metab; 1988 Dec; 8(6):816-21. PubMed ID: 3192646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in regional cerebral catecholamines following middle cerebral artery occlusion in the rat].
    Kaneko D; Nakamura N; Tamura A
    No To Shinkei; 1985 Nov; 37(11):1079-85. PubMed ID: 4074579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of the pathophysiology of primate focal cerebral ischaemia by indomethacin.
    Harris RJ; Bayhan M; Branston NM; Watson A; Symon L
    Stroke; 1982; 13(1):17-24. PubMed ID: 7064174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat.
    Hakim AM
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):676-83. PubMed ID: 3793803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter.
    Ransom BR; Walz W; Davis PK; Carlini WG
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):593-602. PubMed ID: 1618938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia.
    Silver IA; Erecińska M
    J Cereb Blood Flow Metab; 1992 Sep; 12(5):759-72. PubMed ID: 1324251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain mitochondrial redox state, tissue haemodynamic and extracellular ion responses to four-vessel occlusion and spreading depression in the rat.
    Mayevsky A; Duckrow RB; Yoles E; Zarchin N; Kaushausky D
    Neurol Res; 1990 Dec; 12(4):243-8. PubMed ID: 1982168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endobain E, a brain endogenous factor, is present and modulates NMDA receptor in ischemic conditions.
    Reinés A; Zárate S; Carmona C; Negri G; Peña C; Rodríguez de Lores Arnaiz G
    Life Sci; 2005 Dec; 78(3):245-52. PubMed ID: 16107263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo uptake of [3H]nimodipine in focal cerebral ischemia: modulation by hyperglycemia.
    Osuga S; Hogan MJ
    J Cereb Blood Flow Metab; 1997 Oct; 17(10):1057-65. PubMed ID: 9346430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relevance of interstitial glutamate to selective vulnerability in focal cerebral ischemia.
    Osuga H; Hakim AM
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):343-7. PubMed ID: 7906692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat.
    Gill R; Andiné P; Hillered L; Persson L; Hagberg H
    J Cereb Blood Flow Metab; 1992 May; 12(3):371-9. PubMed ID: 1314840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat.
    Syková E; Svoboda J; Polák J; Chvátal A
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):301-11. PubMed ID: 8113325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular potassium concentration in juvenile and adult rat brain cortex during anoxia.
    Hansen AJ
    Acta Physiol Scand; 1977 Apr; 99(4):412-20. PubMed ID: 855671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid.
    Shimada N; Graf R; Rosner G; Heiss WD
    J Neurochem; 1993 Jan; 60(1):66-71. PubMed ID: 8417167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moderate arterial hypotension reduces cerebral cortical blood flow and enhances cellular release of potassium in severe hypoglycemia.
    Pelligrino D; Yokoyama H; Ingvar M; Siesjö BK
    Acta Physiol Scand; 1982 Aug; 115(4):511-3. PubMed ID: 7180543
    [No Abstract]   [Full Text] [Related]  

  • 36. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats.
    Siemkowicz E; Hansen AJ
    Stroke; 1981; 12(2):236-40. PubMed ID: 7233472
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebral cortical extracellular fluid H+ and K+ activities during hypotension in cats.
    Morris PJ; Heuser D; McDowall DG; Hashiba M; Myers D
    Anesthesiology; 1983 Jul; 59(1):10-8. PubMed ID: 6859606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extracellular potassium and blood flow in the post-ischemic rat brain.
    Hansen AJ; Gjedde A; Siemkowicz E
    Pflugers Arch; 1980 Dec; 389(1):1-7. PubMed ID: 7193461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate.
    Astrup J; Rehncrona S; Siesjö BK
    Brain Res; 1980 Oct; 199(1):161-74. PubMed ID: 7407619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induced hypotension and brain ischaemia.
    McDowall DG
    Br J Anaesth; 1985 Jan; 57(1):110-9. PubMed ID: 3881109
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.