These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6725430)

  • 41. Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex.
    Urbanics R; Leniger-Follert E; Lübbers DW
    Pflugers Arch; 1978 Dec; 378(1):47-53. PubMed ID: 32522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic, ionic, and electrical responses of gerbil brain to ischemia.
    Mayevsky A; Friedli CM; Reivich M
    Am J Physiol; 1985 Jan; 248(1 Pt 2):R99-107. PubMed ID: 3970191
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-induced seizures.
    Astrup J; Blennow G; Nilsson B
    Brain Res; 1979 Nov; 177(1):115-26. PubMed ID: 497817
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of circulating adrenaline on extracellular fluid potassium concentration in the brain.
    Pelligrino D; Siesjö BK
    Acta Physiol Scand; 1980 Sep; 110(1):111-2. PubMed ID: 7468267
    [No Abstract]   [Full Text] [Related]  

  • 45. Reversibility of ischaemically induced changes in extracellular potassium in primate cortex.
    Branston NM; Symon L; Strong AJ
    J Neurol Sci; 1978 Jun; 37(1-2):37-49. PubMed ID: 99493
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extracellular free calcium and potassium during paroxsmal activity in the cerebral cortex of the cat.
    Heinemann U; Lux HD; Gutnick MJ
    Exp Brain Res; 1977 Mar; 27(3-4):237-43. PubMed ID: 880984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities.
    McCreery DB; Agnew WF
    Exp Neurol; 1983 Feb; 79(2):371-96. PubMed ID: 6822270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium-dependent component of massive increase in extracellular potassium during cerebral ischemia as demonstrated by microdialysis in vivo.
    Katayama Y; Tamura T; Becker DP; Tsubokawa T
    Brain Res; 1991 Dec; 567(1):57-63. PubMed ID: 1815829
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitochondrial redox responses to cerebral ischaemia produced by four-vessel occlusion in the rat.
    Harrison M; Sick TJ; Rosenthal M
    Neurol Res; 1985 Sep; 7(3):142-8. PubMed ID: 2866458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous recording of tissue PCO2, interstitial pH and potassium activity in the rat cerebral cortex during anoxia and the subsequent recovery period.
    Ohno M; Obrenovitch TP; Hartell N; Barratt S; Bachelard HS; Symon L
    Neurol Res; 1989 Sep; 11(3):153-9. PubMed ID: 2573850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cerebral metabolism in ischaemia: neurochemical basis for therapy.
    Siesjö BK; Wieloch T
    Br J Anaesth; 1985 Jan; 57(1):47-62. PubMed ID: 3917676
    [No Abstract]   [Full Text] [Related]  

  • 52. Thresholds of ischaemia in brain cortex.
    Symon L; Lassen NA; Astrup J; Branston NM
    Adv Exp Med Biol; 1977 Jul 4-7; 94():775-82. PubMed ID: 418627
    [No Abstract]   [Full Text] [Related]  

  • 53. Anoxic changes of extracellular potassium concentration in the cerebral cortex of young rats.
    Mares P; Kríz N; Brozek G; Bures J
    Exp Neurol; 1976 Oct; 53(1):12-20. PubMed ID: 964333
    [No Abstract]   [Full Text] [Related]  

  • 54. Human tumor extracellular pH as a function of blood glucose concentration.
    Leeper DB; Engin K; Thistlethwaite AJ; Hitchon HD; Dover JD; Li DJ; Tupchong L
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(4):935-43. PubMed ID: 8138447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The contribution of local blood flow to the rapid clearance of potassium from the cortical extracellular space.
    Mutsuga N; Schuette WH; Lewis DV
    Brain Res; 1976 Nov; 116(3):431-6. PubMed ID: 974786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pharmacological actions on hypoxic increase of rat brain cortex extracellular K+ ion.
    Nataf N; Gourmel B; Rossignol P
    Pharmacol Res Commun; 1978 Jul; 10(7):589-96. PubMed ID: 362432
    [No Abstract]   [Full Text] [Related]  

  • 57. Cefsulodin penetration into rat brain: extracellular versus total concentration.
    Meulemans A; Vicart P; Henzel D; Mohler J; Vulpillat M
    Chemotherapy; 1986; 32(5):393-8. PubMed ID: 3757584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Indirect measurement of total exchangeable potassium.
    Shizgal HM; Spanier AH; Humes J; Wood CD
    Am J Physiol; 1977 Sep; 233(3):F253-9. PubMed ID: 910922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of potassium ion loss in the anoxic impairment of respiration of rat cerebral-cortex slices.
    Patel NJ; Fixter LM
    Biochem Soc Trans; 1975; 3(1):101-2. PubMed ID: 1126511
    [No Abstract]   [Full Text] [Related]  

  • 60. Changes in ionic fluxes during cerebral ischaemia.
    Kristián T; Siesjö BK
    Int Rev Neurobiol; 1997; 40():27-45. PubMed ID: 8989615
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.