These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 6725941)
1. Morphogenesis and morphology of the brain stem nuclei of Cetacea. II. The nuclei of the accessory, vagal and glossopharyngeal nerves in baleen whales. Jansen J; Osen KK J Hirnforsch; 1984; 25(1):53-87. PubMed ID: 6725941 [TBL] [Abstract][Full Text] [Related]
2. Morphogenesis and morphology of the brain stem nuclei of Cetacea. I. The hypoglossal nucleus. Jansen J; Korneliussen H J Hirnforsch; 1977; 18(3):253-69. PubMed ID: 925345 [TBL] [Abstract][Full Text] [Related]
3. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat. Matesz C; Székely G Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828 [TBL] [Abstract][Full Text] [Related]
4. Topography and organization of cranial nerve nuclei in the sand lizard, Lacerta agilis. Székely G; Matesz C J Comp Neurol; 1988 Jan; 267(4):525-44. PubMed ID: 3346375 [TBL] [Abstract][Full Text] [Related]
5. The motor nuclei and primary projections of the IXth, Xth, XIth and XIIth cranial nerves in the monitor lizard, Varanus exanthematicus. Barbas-Henry HA; Lohman AH J Comp Neurol; 1984 Jul; 226(4):565-79. PubMed ID: 6747035 [TBL] [Abstract][Full Text] [Related]
6. Central projections and motor nuclei of the facial, glossopharyngeal, and vagus nerves in the mormyrid fish Gnathonemus petersii. Lazar G; Szabo T; Libouban S; Ravaille-Veron M; Toth P; Brändle K J Comp Neurol; 1992 Nov; 325(3):343-58. PubMed ID: 1447406 [TBL] [Abstract][Full Text] [Related]
7. Organization of the motor nuclei in the cervical spinal cord of salamanders. Wake DB; Nishikawa KC; Dicke U; Roth G J Comp Neurol; 1988 Dec; 278(2):195-208. PubMed ID: 3230160 [TBL] [Abstract][Full Text] [Related]
8. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study. Stuesse SL; Cruce WL; Powell KS J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937 [TBL] [Abstract][Full Text] [Related]
9. Prenatal development of the human nucleus ambiguus during the embryonic and early fetal periods. Brown JW Am J Anat; 1990 Nov; 189(3):267-83. PubMed ID: 2260533 [TBL] [Abstract][Full Text] [Related]
10. Representation of the cecum in the lateral dorsal motor nucleus of the vagus nerve and commissural subnucleus of the nucleus tractus solitarii in rat. Altschuler SM; Ferenci DA; Lynn RB; Miselis RR J Comp Neurol; 1991 Feb; 304(2):261-74. PubMed ID: 1707898 [TBL] [Abstract][Full Text] [Related]
11. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. Beckstead RM; Morse JR; Norgren R J Comp Neurol; 1980 Mar; 190(2):259-82. PubMed ID: 6769981 [TBL] [Abstract][Full Text] [Related]
12. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. Oka Y; Takeuchi H; Satou M; Ueda K J Comp Neurol; 1987 May; 259(3):400-23. PubMed ID: 3584564 [TBL] [Abstract][Full Text] [Related]
13. Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. Clerici WJ; Coleman JR J Comp Neurol; 1990 Jul; 297(1):14-31. PubMed ID: 2376630 [TBL] [Abstract][Full Text] [Related]
14. Dorsal motor nucleus of the vagus nerve: a cyto- and chemoarchitectonic study in the human. Huang XF; Törk I; Paxinos G J Comp Neurol; 1993 Apr; 330(2):158-82. PubMed ID: 7684048 [TBL] [Abstract][Full Text] [Related]
15. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves. Hanamori T; Smith DV J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588 [TBL] [Abstract][Full Text] [Related]
16. Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus, and hypoglossal nerves of the cockatoo (Cacatua roseicapilla), Cacatuidae. Wild JM J Comp Neurol; 1981 Dec; 203(3):351-77. PubMed ID: 6274918 [TBL] [Abstract][Full Text] [Related]
17. Central origins of cranial nerve parasympathetic neurons in the rat. Contreras RJ; Gomez MM; Norgren R J Comp Neurol; 1980 Mar; 190(2):373-94. PubMed ID: 7381063 [TBL] [Abstract][Full Text] [Related]
18. The dorsomedial nuclear group of cranial nerves in the frog. Matesz C; Székely G Acta Biol Acad Sci Hung; 1977; 28(4):461-74. PubMed ID: 308756 [TBL] [Abstract][Full Text] [Related]
19. Distribution of central cholinergic neurons in the baboon (Papio papio). I. General morphology. Satoh K; Fibiger HC J Comp Neurol; 1985 Jun; 236(2):197-214. PubMed ID: 4056094 [TBL] [Abstract][Full Text] [Related]
20. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. Bieger D; Hopkins DA J Comp Neurol; 1987 Aug; 262(4):546-62. PubMed ID: 3667964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]