These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 672631)

  • 1. Genetic differences in microsomal electron transport: the Ah locus.
    Nebert DW
    Methods Enzymol; 1978; 52():226-40. PubMed ID: 672631
    [No Abstract]   [Full Text] [Related]  

  • 2. The molecular organization of the liver microsomal monooxygenatic system.
    Ruckpaul K
    Pharmazie; 1978 Jun; 33(6):310-2. PubMed ID: 356060
    [No Abstract]   [Full Text] [Related]  

  • 3. The murine Ah locus: genetic differences in birth defects among individuals in the same uterus.
    Nebert DW; Shum S
    Prog Clin Biol Res; 1980; 46():173-96. PubMed ID: 7022460
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of chronic tiadenol administration on liver microsomal cytochrome P-450 and associated monooxygenases in the rat.
    Maffei Facino R; Carini M; Nava ML; Tofanetti O
    Farmaco Prat; 1983 Dec; 38(12):429-38. PubMed ID: 6662218
    [No Abstract]   [Full Text] [Related]  

  • 5. [Cytokines and microsomal oxidation].
    Sibiriak SV; Sergeeva SA
    Eksp Klin Farmakol; 1998; 61(5):75-80. PubMed ID: 9854642
    [No Abstract]   [Full Text] [Related]  

  • 6. Genetic differences in cytochrome P-450 during induction of mono-oxygenase activities.
    Nebert DW; Considine N; Kon H
    Drug Metab Dispos; 1973; 1(1):231-8. PubMed ID: 4149388
    [No Abstract]   [Full Text] [Related]  

  • 7. Interindividual variation in relative CYP1A2/3A4 phenotype influences susceptibility of clozapine oxidation to cytochrome P450-specific inhibition in human hepatic microsomes.
    Zhang WV; D'Esposito F; Edwards RJ; Ramzan I; Murray M
    Drug Metab Dispos; 2008 Dec; 36(12):2547-55. PubMed ID: 18809730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of thiobenzamide by the FAD-containing and cytochrome P-450-dependent monooxygenases of liver and lung microsomes.
    Tynes RE; Hodgson E
    Biochem Pharmacol; 1983 Nov; 32(22):3419-28. PubMed ID: 6418176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and developmental diversity of hepatic cytochromes P450. Warfarin and progesterone metabolism by hepatic microsomes from four inbred strains of rat.
    Kitareewan S; Walz FG
    Drug Metab Dispos; 1994; 22(4):607-15. PubMed ID: 7956737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The liver microsomal hydroxylation enzyme system. Induction and properties of the functional components.
    Lu AY; Kuntzman R; Conney AH
    Front Gastrointest Res; 1976; 2():1-31. PubMed ID: 819342
    [No Abstract]   [Full Text] [Related]  

  • 11. Induction of diabetes and evaluation of diabetic state on P450 expression.
    Schenkman JB
    Methods Enzymol; 1991; 206():325-31. PubMed ID: 1784219
    [No Abstract]   [Full Text] [Related]  

  • 12. New heterocyclic modifiers of oxidative drug metabolism--II. Steric factors in the interaction of isomeric 2-(naphthyl)methylbenzimidazoles with rat hepatic microsomal cytochrome P-450 and monooxygenase activities.
    Murray M
    Biochem Pharmacol; 1987 Feb; 36(4):463-8. PubMed ID: 3493778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin.
    Heyn H; White RB; Stevens JC
    Drug Metab Dispos; 1996 Sep; 24(9):948-54. PubMed ID: 8886603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turnover of two drug-inducible forms of microsomal cytochrome P-450 in rat liver.
    Sadano H; Omura T
    J Biochem; 1983 May; 93(5):1375-83. PubMed ID: 6411696
    [No Abstract]   [Full Text] [Related]  

  • 15. Impairment of bunitrolol 4-hydroxylase activity in liver microsomes of dark agouti rats.
    Suzuki T; Narimatsu S; Fujita S; Masubuchi Y; Umeda S
    Biochem Pharmacol; 1991 Nov; 42(11):2241-4. PubMed ID: 1958240
    [No Abstract]   [Full Text] [Related]  

  • 16. Dietary restriction postpones the age-dependent compromise of male rat liver microsomal monooxygenases.
    Schmucker DL; Wang RK
    Prog Clin Biol Res; 1989; 287():283-8. PubMed ID: 2493654
    [No Abstract]   [Full Text] [Related]  

  • 17. [State of microsomal oxidation enzymes as a function of acetyltransferase activity].
    Rudaia NV; Syvachenko OE; Alferov AN; Bychkar' EM; Korzhov VI
    Ukr Biokhim Zh (1978); 1993; 65(6):108-11. PubMed ID: 8048175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of perfusion of liver and other organs for the study of microsomal electron-transport and cytochrome P-450 systems.
    Sies H
    Methods Enzymol; 1978; 52():48-59. PubMed ID: 672651
    [No Abstract]   [Full Text] [Related]  

  • 19. Biotransformation of methylmercury with special reference to hepatic microsomal cytochrome P-450 linked monooxygenase system.
    Nakayama M
    Kumamoto Med J; 1976 Sep; 29(3):95-109. PubMed ID: 1011794
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization and regulation of rat hepatic microsomal cytochrome P-450 isozymes.
    Ryan DE; Thomas PE; Parkinson A; Reik LM; Wood AW; Levin W
    Ann N Y Acad Sci; 1984; 435():73-85. PubMed ID: 6598008
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.