These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6727309)

  • 1. Analytical solutions for shear deformation and flow of red cell membrane.
    Hochmuth RM; Berk DA
    J Biomech Eng; 1984 Feb; 106(1):2-9. PubMed ID: 6727309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature on rheology of human erythrocytes.
    Sung KL; Chien S
    Chin J Physiol; 1992; 35(2):81-94. PubMed ID: 1451575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensional recovery of an intact erythrocyte from a tank-treading motion.
    Sutera SP; Mueller ER; Zahalak GI
    J Biomech Eng; 1990 Aug; 112(3):250-6. PubMed ID: 2214705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis.
    Hochmuth RM; Evans EA
    Biophys J; 1982 Jul; 39(1):71-81. PubMed ID: 7104453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane.
    Chien S; Sung KL; Skalak R; Usami S; Tözeren A
    Biophys J; 1978 Nov; 24(2):463-87. PubMed ID: 728524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation and orientation of red blood cells in a simple shear flow. Theoretical study and approach at small angle light scattering.
    Stoltz JF; Ravey JC; Larcan A; Mazeron P; Lucius M; Guillot M
    Scand J Clin Lab Invest Suppl; 1981; 156():67-75. PubMed ID: 6798684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical approach. Theoretical models of deformability in blood flow.
    Skalak R
    Scand J Clin Lab Invest Suppl; 1981; 156():55-8. PubMed ID: 6948400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of blood cells as soft tissues.
    Skalak R; Chien S
    Biorheology; 1982; 19(3):453-61. PubMed ID: 7104483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force versus axial deflection of pipette-aspirated closed membranes.
    Heinrich V; Ounkomol C
    Biophys J; 2007 Jul; 93(2):363-72. PubMed ID: 17468170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and disaggregation of red blood cells.
    Skalak R
    Biorheology; 1984; 21(4):463-76. PubMed ID: 6487760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
    Rochal SB; Lorman VL
    Phys Rev Lett; 2006 Jun; 96(24):248102. PubMed ID: 16907283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A; Parker KH
    J Biomech Eng; 2011 Jan; 133(1):011007. PubMed ID: 21186897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of the oxygenated sickle erythrocyte membrane.
    Drasler WJ; Smith CM; Keller KH
    Biorheology; 1989; 26(5):935-49. PubMed ID: 2620090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic loading on the red cell membrane in a shear flow: a possible cause of hemolysis.
    Niimi H; Sugihara M
    J Biomech Eng; 1985 May; 107(2):91-5. PubMed ID: 3999717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability and viscoelasticity of human erythrocyte membrane.
    Hochmuth RM
    Scand J Clin Lab Invest Suppl; 1981; 156():63-6. PubMed ID: 6948402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation.
    Evans E; Buxbaum K
    Biophys J; 1981 Apr; 34(1):1-12. PubMed ID: 7213927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of red blood cells and the viscoelastic properties of a concentrated red cell suspension.
    Murata T
    Biorheology; 1984; 21(3):379-91. PubMed ID: 6466807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical fragility of erythrocyte membrane in neonates and adults.
    Böhler T; Leo A; Stadler A; Linderkamp O
    Pediatr Res; 1992 Jul; 32(1):92-6. PubMed ID: 1635851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.