These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system. Koubar K; Bekaert V; Brasse D; Laquerriere P J Microsc; 2015 Jun; 258(3):241-52. PubMed ID: 25818096 [TBL] [Abstract][Full Text] [Related]
7. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector. Park HS; Hwang D; Seo JK IEEE Trans Med Imaging; 2016 Feb; 35(2):480-7. PubMed ID: 26390451 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of metal artifacts in MVCT systems using a model based correction method. Paudel MR; Mackenzie M; Fallone BG; Rathee S Med Phys; 2012 Oct; 39(10):6297-308. PubMed ID: 23039665 [TBL] [Abstract][Full Text] [Related]
9. Modeling of polychromatic attenuation using computed tomography reconstructed images. Yan CH; Whalen RT; Beaupré GS; Yen SY; Napel S Med Phys; 1999 Apr; 26(4):631-42. PubMed ID: 10227366 [TBL] [Abstract][Full Text] [Related]
10. An iterative approach to the beam hardening correction in cone beam CT. Hsieh J; Molthen RC; Dawson CA; Johnson RH Med Phys; 2000 Jan; 27(1):23-9. PubMed ID: 10659734 [TBL] [Abstract][Full Text] [Related]
11. Accurate measurement of bone mineral density using clinical CT imaging with single energy beam spectral intensity correction. Zhang J; Yan CH; Chui CK; Ong SH IEEE Trans Med Imaging; 2010 Jul; 29(7):1382-9. PubMed ID: 20236874 [TBL] [Abstract][Full Text] [Related]
12. Systematic bias in basis material decomposition applied to quantitative dual-energy x-ray imaging. Gingold EL; Hasegawa BH Med Phys; 1992; 19(1):25-33. PubMed ID: 1620055 [TBL] [Abstract][Full Text] [Related]
13. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion. Lin Y; Samei E Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632 [TBL] [Abstract][Full Text] [Related]
14. Optimized low-kV spectrum of dual-energy CT equipped with high-kV tin filtration for electron density measurements. Saito M Med Phys; 2011 Jun; 38(6):2850-8. PubMed ID: 21815360 [TBL] [Abstract][Full Text] [Related]
15. Quantitative bone measurements using x-ray computed tomography with second-order correction. Robertson DD; Huang HK Med Phys; 1986; 13(4):474-9. PubMed ID: 3736505 [TBL] [Abstract][Full Text] [Related]
16. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Burger C; Goerres G; Schoenes S; Buck A; Lonn AH; Von Schulthess GK Eur J Nucl Med Mol Imaging; 2002 Jul; 29(7):922-7. PubMed ID: 12111133 [TBL] [Abstract][Full Text] [Related]
17. Empirical beam hardening correction in the measurement of vertebral bone mineral content by computed tomography. Imamura K; Fujii M Radiology; 1981 Jan; 138(1):223-6. PubMed ID: 7470214 [TBL] [Abstract][Full Text] [Related]
18. Correction for oral contrast artifacts in CT attenuation-corrected PET images obtained by combined PET/CT. Nehmeh SA; Erdi YE; Kalaigian H; Kolbert KS; Pan T; Yeung H; Squire O; Sinha A; Larson SM; Humm JL J Nucl Med; 2003 Dec; 44(12):1940-4. PubMed ID: 14660720 [TBL] [Abstract][Full Text] [Related]
19. Systematic errors in bone-mineral measurements by quantitative computed tomography. Rao GU; Yaghmai I; Wist AO; Arora G Med Phys; 1987; 14(1):62-9. PubMed ID: 3561338 [TBL] [Abstract][Full Text] [Related]
20. A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine. Joseph PM; Ruth C Med Phys; 1997 Oct; 24(10):1629-34. PubMed ID: 9350717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]