These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 672814)

  • 21. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT.
    Grimmer R; Kachelriess M
    Med Phys; 2011 Apr; 38(4):2233-40. PubMed ID: 21626957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-dose quantitative myocardial blood flow imaging using 15O-water and PET without attenuation correction.
    Lubberink M; Harms HJ; Halbmeijer R; de Haan S; Knaapen P; Lammertsma AA
    J Nucl Med; 2010 Apr; 51(4):575-80. PubMed ID: 20237035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical-CT gel-dosimetry. II: Optical artifacts and geometrical distortion.
    Oldham M; Kim L
    Med Phys; 2004 May; 31(5):1093-104. PubMed ID: 15191297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative image-based spectral reconstruction for computed tomography.
    Heismann B; Balda M
    Med Phys; 2009 Oct; 36(10):4471-85. PubMed ID: 19928078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [X-ray hardening correction for ICT in testing workpiece].
    Peng GH; Cai XH; Han Z; Yang XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1426-9. PubMed ID: 18800741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iterative correction of beam hardening artifacts in CT.
    Van Gompel G; Van Slambrouck K; Defrise M; Batenburg KJ; de Mey J; Sijbers J; Nuyts J
    Med Phys; 2011 Jul; 38 Suppl 1():S36. PubMed ID: 21978116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.
    Mehranian A; Zaidi H
    J Nucl Med; 2015 Apr; 56(4):635-41. PubMed ID: 25745090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Material-specific analysis using coherent-scatter imaging.
    Batchelar DL; Cunningham IA
    Med Phys; 2002 Aug; 29(8):1651-60. PubMed ID: 12201410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging.
    Hulme KW; Kappadath SC
    Med Phys; 2014 Apr; 41(4):042502. PubMed ID: 24694155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical image reconstruction for polyenergetic X-ray computed tomography.
    Elbakri IA; Fessler JA
    IEEE Trans Med Imaging; 2002 Feb; 21(2):89-99. PubMed ID: 11929108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion.
    Kitagawa K; George RT; Arbab-Zadeh A; Lima JA; Lardo AC
    Radiology; 2010 Jul; 256(1):111-8. PubMed ID: 20574089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of beam-hardening artifacts in x-ray computerized tomography with gadolinium and iodine contrast agents.
    Ruth C; Joseph PM
    Med Phys; 1995 Dec; 22(12):1977-82. PubMed ID: 8746702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI.
    Marshall HR; Patrick J; Laidley D; Prato FS; Butler J; Théberge J; Thompson RT; Stodilka RZ
    Med Phys; 2013 Aug; 40(8):082509. PubMed ID: 23927354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses: Comparison of Virtual Monoenergetic Extrapolations From Dual-Energy Computed Tomography and an Iterative Metal Artifact Reduction Algorithm in a Phantom Study.
    Higashigaito K; Angst F; Runge VM; Alkadhi H; Donati OF
    Invest Radiol; 2015 Dec; 50(12):828-34. PubMed ID: 26171565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computed Tomography Number Measurement Consistency Under Different Beam Hardening Conditions: Comparison Between Dual-Energy Spectral Computed Tomography and Conventional Computed Tomography Imaging in Phantom Experiment.
    He T; Qian X; Zhai R; Yang Z
    J Comput Assist Tomogr; 2015; 39(6):981-5. PubMed ID: 26196347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual energy computed tomography: simulated monoenergetic and material-selective imaging.
    Hemmingsson A; Jung B; Ytterbergh C
    J Comput Assist Tomogr; 1986; 10(3):490-9. PubMed ID: 3700755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correction for scattered radiation and other background signals in dual-energy computed tomography material thickness measurements.
    Vetter JR; Holden JE
    Med Phys; 1988; 15(5):726-31. PubMed ID: 3185409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Beam hardening simulated correction research for X-ray TICT in testing composites workpiece].
    Peng GH; Cai XH; Han Z; Zhou RF; Yang XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Sep; 27(9):1882-5. PubMed ID: 18051553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.