These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 6728845)

  • 41. Avoiding the road less traveled: how the topology of enzyme-substrate complexes can dictate product selection.
    Eliot AC; Kirsch JF
    Acc Chem Res; 2003 Oct; 36(10):757-65. PubMed ID: 14567709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assay of pyridoxal phosphate and pyridoxamine phosphate, employing S-o-nitrophenyl-L-cysteine, a chromogenic substrate of tryptophanase.
    Suelter CH; Snell EE
    Methods Enzymol; 1979; 62():561-8. PubMed ID: 374982
    [No Abstract]   [Full Text] [Related]  

  • 43. The environments of Trp-248 and Trp-330 in tryptophan indole-lyase from Escherichia coli.
    Phillips RS; Gollnick P
    FEBS Lett; 1990 Jul; 268(1):213-6. PubMed ID: 2200710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An affinity labeling reagent for pyridoxal phosphate dependent enzymes.
    Riva F; Giartosio A; Voltattorni CB; Orlacchio A; Turano C
    Biochem Biophys Res Commun; 1975 Sep; 66(2):863-9. PubMed ID: 241344
    [No Abstract]   [Full Text] [Related]  

  • 45. Separation and evaluation of the covalent and noncovalent interactions which contribute to the binding of pyridoxal 5'-phosphate to D-serine apodehydratase.
    Schonbeck ND; Skalski M; Shafer JA
    J Biol Chem; 1975 Jul; 250(14):5359-63. PubMed ID: 1141234
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphorylated analogs of vitamin B 6 modified in the 5' position and on the phosphate group: synthesis and interaction with pyridoxine phosphate oxidase and certain apoenzymes.
    Korytnyk W; Lachmann B; Angelino N
    Biochemistry; 1972 Feb; 11(5):722-8. PubMed ID: 5062143
    [No Abstract]   [Full Text] [Related]  

  • 47. Recent advances in the study of coenzyme binding to aspartate apoaminotransferases.
    Turano C; Riva F; Giartosio A
    Adv Exp Med Biol; 1982; 148():283-93. PubMed ID: 7124523
    [No Abstract]   [Full Text] [Related]  

  • 48. Phosphorus-31 nuclear magnetic resonance study on cytoplasmic aspartate aminotransferase from pig heart. A reinvestigation.
    Schnackerz KD
    Biochim Biophys Acta; 1984 Sep; 789(2):241-4. PubMed ID: 6477931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.
    Sharif S; Schagen D; Toney MD; Limbach HH
    J Am Chem Soc; 2007 Apr; 129(14):4440-55. PubMed ID: 17371021
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyridoxal phosphate-dependent reactions in water pools.
    Salerno C; Lucano A; Fasella P
    Biochimie; 1989 Apr; 71(4):461-9. PubMed ID: 2474333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pyridoxal-5'-phosphate-sensitized photoinactivation of tryptophanase and evidence for essential histidyl residues in the active sites.
    Nihira T; Toraya T; Fukui S
    Eur J Biochem; 1979 Nov; 101(2):341-7. PubMed ID: 391555
    [No Abstract]   [Full Text] [Related]  

  • 52. Role of Histidine-152 in cofactor orientation in the PLP-dependent O-acetylserine sulfhydrylase reaction.
    Tai CH; Rabeh WM; Guan R; Schnackerz KD; Cook PF
    Arch Biochem Biophys; 2008 Apr; 472(2):115-25. PubMed ID: 18275838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modification of essential histidyl residues of the beta 2 subunit of tryptophan synthetase by photo-oxidation in the presence of pyridoxal 5'-phosphate and L-serine and by diethylpyrocarbonate.
    Miles EW; Kumagai H
    J Biol Chem; 1974 May; 249(9):2843-51. PubMed ID: 4597461
    [No Abstract]   [Full Text] [Related]  

  • 54. The glycine-rich region of Escherichia coli D-serine dehydratase. Altered interactions with pyridoxal 5'-phosphate produced by substitution of aspartic acid for glycine.
    Marceau M; Lewis SD; Shafer JA
    J Biol Chem; 1988 Nov; 263(32):16934-41. PubMed ID: 3053700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preparation of sulfur and selenium amino acids with microbial pyridoxal phosphate enzymes.
    Esaki N; Soda K
    Methods Enzymol; 1987; 143():291-7. PubMed ID: 3657549
    [No Abstract]   [Full Text] [Related]  

  • 56. Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate.
    Barends TR; Domratcheva T; Kulik V; Blumenstein L; Niks D; Dunn MF; Schlichting I
    Chembiochem; 2008 May; 9(7):1024-8. PubMed ID: 18351684
    [No Abstract]   [Full Text] [Related]  

  • 57. A specific protease for pyridoxal enzymes.
    Nutr Rev; 1973 Mar; 31(3):98-9. PubMed ID: 4145226
    [No Abstract]   [Full Text] [Related]  

  • 58. Inhibition of activities of aspartate aminotransferase and tryptophanase by excess binding of pyridoxal 5'-phosphate.
    Masugi F; Natori Y; Shimizu S; Fukui S
    J Nutr Sci Vitaminol (Tokyo); 1973 Aug; 19(4):339-47. PubMed ID: 4590582
    [No Abstract]   [Full Text] [Related]  

  • 59. 31P nuclear magnetic resonance of mitochondrial aspartate aminotransferase. The effects of solution pH and ligand binding.
    Mattingly ME; Mattingly JR; Martinez-Carrion M
    J Biol Chem; 1982 Aug; 257(15):8872-8. PubMed ID: 7096340
    [No Abstract]   [Full Text] [Related]  

  • 60. 15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution.
    Sharif S; Huot MC; Tolstoy PM; Toney MD; Jonsson KH; Limbach HH
    J Phys Chem B; 2007 Apr; 111(15):3869-76. PubMed ID: 17388551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.