BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6728997)

  • 1. Studies on brain noradrenergic neurons in animal model for antidepressive activity.
    Kostowski W; Danysz W; Nowakowska E
    Psychopharmacol Bull; 1984; 20(2):320-2. PubMed ID: 6728997
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of the locus coeruleus-limbic noradrenergic transmission in the action of antidepressant drugs.
    Kostowski W; Plaźnik A; Danysz W
    Psychopharmacol Bull; 1986; 22(2):512-22. PubMed ID: 3022322
    [No Abstract]   [Full Text] [Related]  

  • 3. Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs.
    Kostowski W
    Pol J Pharmacol Pharm; 1985; 37(6):727-43. PubMed ID: 3008134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the locus coeruleus system in an animal model for antidepressive activity.
    Kostowski W; Danysz W; Płaźnik A; Nowakowska E
    Pol J Pharmacol Pharm; 1984; 36(5):523-30. PubMed ID: 6099890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of noradrenergic neurotransmission in the action of desipramine and amitriptyline in animal models of depression.
    Danysz W; Kostowski W; Kozak W; Hauptmann M
    Pol J Pharmacol Pharm; 1986; 38(3):285-98. PubMed ID: 3022258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of vinpocetine on noradrenergic neurons in rat locus coeruleus.
    Gaál L; Molnár P
    Eur J Pharmacol; 1990 Oct; 187(3):537-9. PubMed ID: 2073927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain noradrenergic neurons, their interactions and role in the action of antidepressive drugs.
    Kostowski W
    Acta Physiol Pharmacol Bulg; 1982; 8(1-2):29-36. PubMed ID: 7124417
    [No Abstract]   [Full Text] [Related]  

  • 8. DMI, Wy-45,030, Wy-45,881 and ciramadol inhibit locus coeruleus neuronal activity.
    Haskins JT; Moyer JA; Muth EA; Sigg EB
    Eur J Pharmacol; 1985 Sep; 115(2-3):139-46. PubMed ID: 2998818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic modulation of cortical rat noradrenergic system in the mechanism of action of antidepressant drugs.
    Brunello N; Mocchetti I; Volterra A; Cuomo V; Racagni G
    Psychopharmacol Bull; 1985; 21(3):379-84. PubMed ID: 4034853
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the locus coeruleus involvement in desipramine action in animal models of depression.
    Danysz W; Kostowski W; Hauptmann M
    Pol J Pharmacol Pharm; 1985; 37(6):855-64. PubMed ID: 3938536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological effects of methylphenidate on the coeruleo-cortical noradrenergic system in the rat.
    Lacroix D; Ferron A
    Eur J Pharmacol; 1988 May; 149(3):277-85. PubMed ID: 3409954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons.
    Carlsson A; Fuxe K; Hamberger B; Lindqvist M
    Acta Physiol Scand; 1966; 67(3):481-97. PubMed ID: 5967609
    [No Abstract]   [Full Text] [Related]  

  • 13. Mirtazapine-induced corelease of dopamine and noradrenaline from noradrenergic neurons in the medial prefrontal and occipital cortex.
    Devoto P; Flore G; Pira L; Longu G; Gessa GL
    Eur J Pharmacol; 2004 Mar; 487(1-3):105-11. PubMed ID: 15033381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of the effects of desipramine and reboxetine on locus coeruleus neurons in rat brain slices.
    Grandoso L; Pineda J; Ugedo L
    Neuropharmacology; 2004 May; 46(6):815-23. PubMed ID: 15033341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bupropion: a review of its mechanism of antidepressant activity.
    Ascher JA; Cole JO; Colin JN; Feighner JP; Ferris RM; Fibiger HC; Golden RN; Martin P; Potter WZ; Richelson E
    J Clin Psychiatry; 1995 Sep; 56(9):395-401. PubMed ID: 7665537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity relationships for potent phthalane and thiophthalane inhibitors of norepinephrine uptake. A comparison with desipramine and related compounds.
    Maxwell RA; Ferris RM; Woodward EC; Tang FL; Eckhardt SB
    Mol Pharmacol; 1980 May; 17(3):321-7. PubMed ID: 7393212
    [No Abstract]   [Full Text] [Related]  

  • 17. [Morphologic characteristics of locus coeruleus neurons after selective chemical damage to the catecholaminergic system of the brain].
    Otellin VA; Gilerovich EG; Usova IP
    Arkh Anat Gistol Embriol; 1984 Mar; 86(3):14-22. PubMed ID: 6426440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total neurochemical lesion of noradrenergic neurons of the locus ceruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal.
    Caillé S; Espejo EF; Reneric JP; Cador M; Koob GF; Stinus L
    J Pharmacol Exp Ther; 1999 Aug; 290(2):881-92. PubMed ID: 10411605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic considerations regarding the inhibition by tricyclic antidepressants of the uptake of tritiated norepinephrine by the adrenergic nerves in rabbit aortic strips.
    Maxwell RA; Eckhardt SB; Hite G
    J Pharmacol Exp Ther; 1970 Jan; 171(1):62-9. PubMed ID: 5410938
    [No Abstract]   [Full Text] [Related]  

  • 20. Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson's disease.
    Srinivasan J; Schmidt WJ
    Behav Brain Res; 2004 May; 151(1-2):191-9. PubMed ID: 15084435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.