BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6732242)

  • 1. The interaction of the potential-sensitive molecular probe merocyanine 540 with phosphorylating beef heart submitochondrial particles under equilibrium and time-resolved conditions.
    Smith JC; Graves JM; Williamson M
    Arch Biochem Biophys; 1984 Jun; 231(2):430-53. PubMed ID: 6732242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles.
    Smith JC; Chance B
    J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the extrinsic potential-sensitive molecular probe diS-C3-(5) with pigeon heart mitochondria under equilibrium and time-resolved conditions.
    Bammel BP; Brand JA; Germon W; Smith JC
    Arch Biochem Biophys; 1986 Jan; 244(1):67-84. PubMed ID: 3004342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behavior of a fast-responding barbituric acid potential-sensitive molecular probe in bovine heart submitochondrial particles.
    Tran TV; Allen S; Smith JC
    Biochim Biophys Acta; 1991 Sep; 1059(3):265-74. PubMed ID: 1911823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The behavior of the fluorescence lifetime and polarization of oxonol potential-sensitive extrinsic probes in solution and in beef heart submitochondrial particles.
    Smith JC; Hallidy L; Topp MR
    J Membr Biol; 1981; 60(3):173-85. PubMed ID: 7253009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved monitoring of electrogenic Na+-Ca2+ exchange in the isolated cardiac sarcolemma vesicles by using a rapid-response fluorescent probe.
    Baazov D; Wang X; Khananshvili D
    Biochemistry; 1999 Feb; 38(5):1435-45. PubMed ID: 9931008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and kinetics of merocyanine 540 binding to phospholipid membranes.
    Verkman AS
    Biochemistry; 1987 Jun; 26(13):4050-6. PubMed ID: 3651436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein.
    Power J; Cross RL; Harris DA
    Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the electrochromic dye, merocyanine 540, to membrane potential in rat liver mitochondria.
    Kalenak A; McKenzie RJ; Conover TE
    J Membr Biol; 1991 Jul; 123(1):23-31. PubMed ID: 1774772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis.
    Penefsky HS
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1589-93. PubMed ID: 2858849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate binding affinity changes in mitochondrial energy-linked reactions.
    Hatefi Y; Yagi T; Phelps DC; Wong SY; Vik SB; Galante YM
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1756-60. PubMed ID: 6952227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic interaction between merocyanine 540 and liposomal and mitochondrial membranes.
    Aiuchi T; Kobatake Y
    J Membr Biol; 1979 Apr; 45(3-4):233-44. PubMed ID: 458842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles.
    Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of lipid peroxidation in submitochondrial particles.
    de Hingh YC; Meyer J; Fischer JC; Berger R; Smeitink JA; Op den Kamp JA
    Biochemistry; 1995 Oct; 34(39):12755-60. PubMed ID: 7548029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titration of the binding sites for the oligomycin-sensitivity conferring protein in beef heart submitochondrial particles.
    Dupuis A; Satre M; Vignais PV
    FEBS Lett; 1983 May; 156(1):99-102. PubMed ID: 6189744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.