These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6732243)

  • 21. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2.
    Chaudhury S; Ghosh I; Saha G; Dasgupta S
    Int J Biol Macromol; 2015; 77():287-92. PubMed ID: 25841365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes of lens crystallins photosensitized with tryptophan metabolites.
    Ichijima H; Iwata S
    Ophthalmic Res; 1987; 19(3):157-63. PubMed ID: 3658326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and stability of gamma-crystallins. I. Spectroscopic evaluation of secondary and tertiary structure in solution.
    Mandal K; Bose SK; Chakrabarti B; Siezen RJ
    Biochim Biophys Acta; 1985 Nov; 832(2):156-64. PubMed ID: 4063374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hydrogen peroxide/copper ion system, but not other metal-catalyzed oxidation systems, produces protein-bound dityrosine.
    Kato Y; Kitamoto N; Kawai Y; Osawa T
    Free Radic Biol Med; 2001 Sep; 31(5):624-32. PubMed ID: 11522447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic studies on the photooxidation of calf-lens gamma-crystallin.
    Andley UP; Clark BA
    Curr Eye Res; 1988 Jun; 7(6):571-9. PubMed ID: 3402245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The carboxy-terminal lysine of alpha B-crystallin is an amine-donor substrate for tissue transglutaminase.
    Groenen PJ; Bloemendal H; de Jong WW
    Eur J Biochem; 1992 Apr; 205(2):671-4. PubMed ID: 1349282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molecular localization of non-tryptophan chromophores in calf lens crystallins.
    Pulcini D; Stiuso P; Miele L; Della Pietra G; Colonna G
    Biochim Biophys Acta; 1989 Mar; 995(1):64-9. PubMed ID: 2923916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lens crystallin changes associated with amphibian metamorphosis: involvement of a beta-crystallin polypeptide.
    Jiang YJ; Chiou SH; Chang WC
    Biochem Biophys Res Commun; 1989 Nov; 164(3):1423-30. PubMed ID: 2590209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of fluorescence and cross-links in eye lens crystallin by interaction with lipid peroxy radicals.
    Kikugawa K; Kato T; Beppu M; Hayasaka A
    Biochim Biophys Acta; 1991 Feb; 1096(2):108-14. PubMed ID: 2001425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Generation of oxidants in the near-UV photooxidation of human lens alpha-crystallin.
    Andley UP; Clark BA
    Invest Ophthalmol Vis Sci; 1989 Apr; 30(4):706-13. PubMed ID: 2703311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quenching of tryptophan fluorescence in bovine lens proteins by acrylamide and iodide.
    Augusteyn RC; Putilina T; Seifert R
    Curr Eye Res; 1988 Mar; 7(3):237-45. PubMed ID: 3359809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The H2O2-mediated oxidation of NADPH to NADP+ catalyzed by the heme-undecapeptide from cytochrome C.
    Bodaness RS
    Biochem Biophys Res Commun; 1983 Jun; 113(2):710-6. PubMed ID: 6307298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased susceptibility to metal catalysed oxidation of diabetic lens beta L crystallin: possible protection by dietary supplementation with acetylsalicylic acid.
    Jones RH; Hothersall JS
    Exp Eye Res; 1993 Dec; 57(6):783-90. PubMed ID: 8150030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related changes in protein conformation in bovine lens crystallins.
    Liang JN; Bose SK; Chakrabarti B
    Exp Eye Res; 1985 Mar; 40(3):461-9. PubMed ID: 4065237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tyrosine-to-tryptophan energy transfer and the structure of calf gamma-II crystallin.
    Borkman RF; Phillips SR
    Exp Eye Res; 1985 Jun; 40(6):819-26. PubMed ID: 4018166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The generation of hydrogen peroxide by the UVA irradiation of human lens proteins.
    Linetsky M; Ortwerth BJ
    Photochem Photobiol; 1995 Jul; 62(1):87-93. PubMed ID: 7638274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accessibilities of the sulfhydryl groups of native and photooxidized lens crystallins: a fluorescence lifetime and quenching study.
    Andley UP; Clark BA
    Biochemistry; 1988 Jan; 27(2):810-20. PubMed ID: 3349065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further studies on low molecular weight crystallins: relationship between the bovine beta s, the human 24kD protein and the gamma-crystallins.
    Zigler JS; Russell P; Horwitz J; Reddy VN; Kinoshita JH
    Curr Eye Res; 1986 May; 5(5):395-401. PubMed ID: 3720347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical modifications and dissociation characteristics of tyrosine and tryptophan residues in alpha-crystallin.
    Bera S; Pal J; Roy B; Ghosh SK
    Indian J Biochem Biophys; 1997 Oct; 34(5):419-28. PubMed ID: 9594422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen.
    Garland D; Zigler JS; Kinoshita J
    Arch Biochem Biophys; 1986 Dec; 251(2):771-6. PubMed ID: 3800399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.