These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 6733080)

  • 41. The kinetics and equilibria of squirrel-fish hemoglobin. A Root effect hemoglobin complicated by large subunit heterogeneity.
    Pennelly RR; Riggs A; Noble RW
    Biochim Biophys Acta; 1978 Mar; 533(1):120-9. PubMed ID: 25086
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An investigation of the functioning of the two major haemoglobins of the Sphenodon using fast reaction kinetic methods.
    Brittain T
    Biochem J; 1988 May; 251(3):771-6. PubMed ID: 3415645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A polymerising Root-effect fish hemoglobin with high subunit heterogeneity. Correlation with primary structure.
    Fago A; Romano M; Tamburrini M; Coletta M; D'Avino R; Di Prisco G
    Eur J Biochem; 1993 Dec; 218(3):829-35. PubMed ID: 8281934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CO binding and valency exchange in asymmetric Hb hybrids.
    Kiger L; Poyart C; Marden MC
    Biochemistry; 1998 Oct; 37(41):14643-50. PubMed ID: 9772193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations.
    Goldbeck RA; Esquerra RM; Holt JM; Ackers GK; Kliger DS
    Biochemistry; 2004 Sep; 43(38):12048-64. PubMed ID: 15379545
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A tertiary two-state allosteric model for hemoglobin.
    Henry ER; Bettati S; Hofrichter J; Eaton WA
    Biophys Chem; 2002 Jul; 98(1-2):149-64. PubMed ID: 12128196
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin.
    Mathews AJ; Rohlfs RJ; Olson JS; Tame J; Renaud JP; Nagai K
    J Biol Chem; 1989 Oct; 264(28):16573-83. PubMed ID: 2777799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling of ferric iron spin and allosteric equilibrium in hemoglobin.
    Marden MC; Kiger L; Kister J; Bohn B; Poyart C
    Biophys J; 1991 Oct; 60(4):770-6. PubMed ID: 1742452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural states and transitions of carp hemoglobin.
    Pennelly RR; Tan-Wilson AL; Noble RW
    J Biol Chem; 1975 Sep; 250(18):7239-44. PubMed ID: 240820
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron paramagnetic resonance studies on cobalt hemoglobin, iron-cobalt hybrid hemoglobins, and their related model complexes. Characterization of proximal histidine binding to porphyrin cobalt(II) ion and its transition associated with subunit interaction.
    Inubushi T; Yonetani T
    Biochemistry; 1983 Apr; 22(8):1894-900. PubMed ID: 6303396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Allosteric properties of carbamylated hemoglobins.
    Lee TC; Gibson QH
    J Biol Chem; 1981 May; 256(9):4570-7. PubMed ID: 7217099
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic properties of cobalt--iron hybrid hemoglobins.
    Oertle M; Winterhalter KH; Di Iorio EE
    FEBS Lett; 1983 Mar; 153(1):213-6. PubMed ID: 6825860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competition in oxygen-linked anion binding to normal and variant human hemoglobins.
    Bonaventura C; Bonaventura J
    Hemoglobin; 1980; 4(3-4):275-89. PubMed ID: 7419423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed mutations of human hemoglobin at residue 35beta: a residue at the intersection of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces.
    Kavanaugh JS; Weydert JA; Rogers PH; Arnone A; Hui HL; Wierzba AM; Kwiatkowski LD; Paily P; Noble RW; Bruno S; Mozzarelli A
    Protein Sci; 2001 Sep; 10(9):1847-55. PubMed ID: 11514675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An investigation of the co-operative binding of carbon monoxide to the haemoglobin of the carpet shark Cephaloscyllium.
    Brittain T; Barber D; Greenwood C; Wells RM
    Comp Biochem Physiol B; 1982; 72(4):689-93. PubMed ID: 7128118
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testing the two-state model: anomalous effector binding to human hemoglobin.
    Marden MC; Hazard ES; Gibson QH
    Biochemistry; 1986 Nov; 25(23):7591-6. PubMed ID: 3801435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetic differences at low temperatures between R and T state carbon monoxide-carp hemoglobin.
    Cobau WG; LeGrange JD; Austin RH
    Biophys J; 1985 Jun; 47(6):781-6. PubMed ID: 4016198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin.
    Seamonds B; McCray JA; Parkhurst LJ; Smith PD
    J Biol Chem; 1976 May; 251(9):2579-83. PubMed ID: 4451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The relation between carbon monoxide binding and the conformational change of hemoglobin.
    Sawicki CA; Gibson QH
    Biophys J; 1978 Oct; 24(1):21-33. PubMed ID: 30492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of chemically modified Ni(II)-Fe(II) hybrid hemoglobins. Ni(II) protoporphyrin IX as a model for a permanent deoxy-heme.
    Shibayama N; Morimoto H; Kitagawa T
    J Mol Biol; 1986 Nov; 192(2):331-6. PubMed ID: 3560220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.