These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 6733148)
1. Changing protein patterns during lens cell aging in vitro. Ramaekers FC; Hukkelhoven MW; Groeneveld A; Bloemendal H Biochim Biophys Acta; 1984 Jun; 799(3):221-9. PubMed ID: 6733148 [TBL] [Abstract][Full Text] [Related]
2. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions. Simonneau L; Hervé B; Jacquemin E; Courtois Y Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854 [TBL] [Abstract][Full Text] [Related]
3. AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress. Muchowski PJ; Valdez MM; Clark JI Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):951-8. PubMed ID: 10102292 [TBL] [Abstract][Full Text] [Related]
4. UV-A-related alterations of young and adult lens water-insoluble alpha-crystallin, plasma membranous and cytoskeletal proteins. Weinreb O; Dovrat A; Dunia I; Benedetti EL; Bloemendal H Eur J Biochem; 2001 Feb; 268(3):536-43. PubMed ID: 11168392 [TBL] [Abstract][Full Text] [Related]
5. Changes in crystallin expression during transdifferentiation and subsequent ageing of embryonic chick neural retina in vitro: comparison with lens epithelium. Patek CE; Jeanny JC; Clayton RM Exp Eye Res; 1993 Nov; 57(5):527-37. PubMed ID: 8282039 [TBL] [Abstract][Full Text] [Related]
6. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Su SP; McArthur JD; Truscott RJ; Aquilina JA Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408 [TBL] [Abstract][Full Text] [Related]
7. In vitro studies on the assembly properties of the lens proteins CP49, CP115: coassembly with alpha-crystallin but not with vimentin. Carter JM; Hutcheson AM; Quinlan RA Exp Eye Res; 1995 Feb; 60(2):181-92. PubMed ID: 7781747 [TBL] [Abstract][Full Text] [Related]
8. A comparison of the changing patterns of crystallin expression in vivo, in long-term primary cultures in vitro and in response to a carcinogen. Patek CE; Clayton RM Exp Eye Res; 1985 Mar; 40(3):357-78. PubMed ID: 4065232 [TBL] [Abstract][Full Text] [Related]
9. Cytoskeletal and contractile structures in bovine lens cell differentiation. Ramaekers FC; Boomkens TR; Bloemendal H Exp Cell Res; 1981 Oct; 135(2):454-61. PubMed ID: 7308306 [No Abstract] [Full Text] [Related]
10. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress. Weinreb O; van Rijk AF; Dovrat A; Bloemendal H Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3893-7. PubMed ID: 11053291 [TBL] [Abstract][Full Text] [Related]
11. alpha-Crystallin localizes to the leading edges of migrating lens epithelial cells. Maddala R; Rao VP Exp Cell Res; 2005 May; 306(1):203-15. PubMed ID: 15878345 [TBL] [Abstract][Full Text] [Related]
12. Analysis of UVA-related alterations upon aging of eye lens proteins by mini two-dimensional polyacrylamide gel electrophoresis. Weinreb O; van Rijk FA; Steely HT; Dovrat A; Bloemendal H Ophthalmic Res; 2000; 32(5):195-204. PubMed ID: 10971180 [TBL] [Abstract][Full Text] [Related]
13. The mammalian iris-ciliary complex affects organization and synthesis of cytoskeletal proteins of organ and tissue cultured lens epithelial cells. Banerjee A; Emanuel K; Parafina J; Bagchi M J Cell Biochem; 1992 Oct; 50(2):143-58. PubMed ID: 1429880 [TBL] [Abstract][Full Text] [Related]
14. [The synthesis and localization of crystallins in different cell compartments of the crystalline lens in adult frogs: immunoautoradiographic and immunofluorescent research]. Simirskiĭ VN; Fedtsova NG; Aleĭnikova KS; Mikhaĭlov AT Ontogenez; 1991; 22(4):381-93. PubMed ID: 1945270 [TBL] [Abstract][Full Text] [Related]
15. Identification of two of the major phosphorylated polypeptides of the bovine lens utilizing a lens cAMP-dependent protein kinase system. Sredy J; Roy D; Spector A Curr Eye Res; 1984 Dec; 3(12):1423-31. PubMed ID: 6525880 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
17. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
19. Influence of hormones and growth factors on lens protein composition: the effect of dexamethasone and PDGF-AA. Vinader LM; van Genesen ST; de Jong WW; Lubsen NH Mol Vis; 2003 Dec; 9():723-9. PubMed ID: 14685140 [TBL] [Abstract][Full Text] [Related]
20. Association of alpha-crystallin with actin in cultured lens cells. Del Vecchio PJ; MacElroy KS; Rosser MP; Church RL Curr Eye Res; 1984 Oct; 3(10):1213-9. PubMed ID: 6386347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]