These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 6733242)

  • 1. Model of calcium movements during activation in the sarcomere of frog skeletal muscle.
    Cannell MB; Allen DG
    Biophys J; 1984 May; 45(5):913-25. PubMed ID: 6733242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcoplasmic reticulum calcium release in frog skeletal muscle fibres estimated from Arsenazo III calcium transients.
    Baylor SM; Chandler WK; Marshall MW
    J Physiol; 1983 Nov; 344():625-66. PubMed ID: 6655593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of calcium diffusion, binding and membrane transport in the sarcomere of frog skeletal muscle.
    Hollý M; Poledna J
    Gen Physiol Biophys; 1989 Dec; 8(6):539-53. PubMed ID: 2533126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of Ca2+ movements within the sarcomere of fast-twitch mouse fibers stimulated by action potentials.
    Baylor SM; Hollingworth S
    J Gen Physiol; 2007 Sep; 130(3):283-302. PubMed ID: 17724162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle.
    Baylor SM; Hollingworth S
    J Gen Physiol; 1998 Sep; 112(3):297-316. PubMed ID: 9725890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sensitivity of fast muscle contractile function to the major components of the sarcomere Ca(2+)-cycling system.
    Golding C; Kelly K; Kinsey ST; Locke BR
    Biophys Chem; 2016 Apr; 211():9-18. PubMed ID: 26774860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of calcium release from the sarcoplasmic reticulum into the myoplasm of frog cut muscle fibers.
    Chandler WK; Hirota A; Jong DS; Pape PC
    Jpn J Physiol; 1993; 43 Suppl 1():S77-81. PubMed ID: 8271519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation of muscle cell contraction and calcium distribution in sarcomere.
    Poledna J
    Gen Physiol Biophys; 1989 Apr; 8(2):81-90. PubMed ID: 2777060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compartment calcium model of frog skeletal muscle during activation.
    Liu W; Olson SD
    J Theor Biol; 2015 Jan; 364():139-53. PubMed ID: 25234233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modelling identifies the impact of subtle anatomical variations between amphibian and mammalian skeletal muscle on spatiotemporal calcium dynamics.
    Groenendaal W; Jeneson JA; Verhoog PJ; van Riel NA; Ten Eikelder HM; Nicolay K; Hilbers PA
    IET Syst Biol; 2008 Nov; 2(6):411-22. PubMed ID: 19045836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carp parvalbumin binds to and directly interacts with the sarcoplasmic reticulum for Ca2+ translocation.
    Ushio H; Watabe S
    Biochem Biophys Res Commun; 1994 Feb; 199(1):56-62. PubMed ID: 8123046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy.
    Hollingworth S; Soeller C; Baylor SM; Cannell MB
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):551-60. PubMed ID: 10922007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of calcium during contraction and relaxation of crayfish skeletal muscle fibre.
    Poledna J; Simurdová A
    Gen Physiol Biophys; 1992 Oct; 11(5):427-39. PubMed ID: 1291445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres.
    Stephenson DG; Wendt IR
    J Muscle Res Cell Motil; 1984 Jun; 5(3):243-72. PubMed ID: 6378970
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium indicators and calcium signalling in skeletal muscle fibres during excitation-contraction coupling.
    Baylor SM; Hollingworth S
    Prog Biophys Mol Biol; 2011 May; 105(3):162-79. PubMed ID: 20599552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular pH and relaxation of frog muscle.
    Curtin NA
    Adv Exp Med Biol; 1988; 226():657-69. PubMed ID: 3261495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D diffusional-compartmental model of the calcium dynamics in cytosol, sarcoplasmic reticulum and mitochondria of murine skeletal muscle fibers.
    Marcucci L; Canato M; Protasi F; Stienen GJM; Reggiani C
    PLoS One; 2018; 13(7):e0201050. PubMed ID: 30048500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium binding and tension development in detergent-treated muscle fibers.
    Orentlicher M; Reuben JP; Grundfest H; Brandt PW
    J Gen Physiol; 1974 Feb; 63(2):168-86. PubMed ID: 4812634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course of activation of calcium release from sarcoplasmic reticulum in skeletal muscle.
    Simon BJ; Schneider MF
    Biophys J; 1988 Dec; 54(6):1159-63. PubMed ID: 3233270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.