These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6733528)

  • 1. Limbic influence on the periaqueductal gray: a single unit study in the awake squirrel monkey.
    Sandrew BB; Poletti CE
    Brain Res; 1984 Jun; 303(1):77-86. PubMed ID: 6733528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM; Behbehani MM
    Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal influence on amygdala unit activity in awake squirrel monkeys.
    Morrison F; Poletti CE
    Brain Res; 1980 Jun; 192(2):353-69. PubMed ID: 6769546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat.
    Da Costa Gomez TM; Chandler SD; Behbehani MM
    Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amygdala to periaqueductal gray pathway: plastic changes induced by audiogenic kindling and reversal by gabapentin.
    Tupal S; Faingold CL
    Brain Res; 2012 Sep; 1475():71-9. PubMed ID: 22841539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship of periaqueductal gray neurons to vocalization and laryngeal EMG in the behaving monkey.
    Larson CR; Kistler MK
    Exp Brain Res; 1986; 63(3):596-606. PubMed ID: 3758271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reformulation of the Papez circuit: absence of hippocampal influence on cingulate cortex unit activity in the primate.
    Dagi TF; Poletti CE
    Brain Res; 1983 Jan; 259(2):229-36. PubMed ID: 6297670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kindling of the midbrain periaqueductal gray in rats.
    Omori N; Ishimoto T; Mutoh F; Chiba S
    Brain Res; 2001 Jun; 903(1-2):162-7. PubMed ID: 11382399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory response in entorhinal and subicular cortices after electrical stimulation of the lateral and basolateral amygdala of the rat.
    Colino A; Fernández de Molina A
    Brain Res; 1986 Jul; 378(2):416-9. PubMed ID: 3730885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological influence of lateral proisocortex on the midbrain periaqueductal gray: evidence for a role of an excitatory amino acid in synaptic activation.
    Behbehani MM; Jiang M; Ennis M; Shipley MT
    Neuroscience; 1993 Apr; 53(3):787-95. PubMed ID: 8487955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connections of the hypothalamic paraventricular nucleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: an electrophysiological study in the rat.
    Pittman QJ; Blume HW; Renaud LP
    Brain Res; 1981 Jun; 215(1-2):15-28. PubMed ID: 7260585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unit activity alterations induced in the mesencephalic periaqueductal gray by local electrical stimulation.
    Sandner G; Schmitt P; Karli P
    Brain Res; 1986 Oct; 386(1-2):53-63. PubMed ID: 3779420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus.
    Willis WD; Gerhart KD; Willcockson WS; Yezierski RP; Wilcox TK; Cargill CL
    J Neurophysiol; 1984 Mar; 51(3):467-80. PubMed ID: 6422009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal activity in the periaqueductal gray and bordering structures during vocal communication in the squirrel monkey.
    Düsterhöft F; Häusler U; Jürgens U
    Neuroscience; 2004; 123(1):53-60. PubMed ID: 14667441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of periaqueductal gray and nucleus raphe magnus stimulation on the spontaneous and noxious-evoked activity of lateral reticular nucleus neurons in rabbits.
    Sotgiu ML
    Brain Res; 1987 Jun; 414(2):219-27. PubMed ID: 3620928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation.
    Gerhart KD; Yezierski RP; Wilcox TK; Willis WD
    J Neurophysiol; 1984 Mar; 51(3):450-66. PubMed ID: 6699675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micturition-related neuronal firing in the periaqueductal gray area in cats.
    Liu Z; Sakakibara R; Nakazawa K; Uchiyama T; Yamamoto T; Ito T; Hattori T
    Neuroscience; 2004; 126(4):1075-82. PubMed ID: 15207340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological evidence for an excitatory pathway from entorhinal cortex to amygdala in the rat.
    Brothers LA; Finch DM
    Brain Res; 1985 Dec; 359(1-2):10-20. PubMed ID: 4075137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal elicitation of respiratory-type and other unit responses in basal limbic structures of squirrel monkeys.
    Radna RJ; MacLean PD
    Brain Res; 1981 May; 213(1):45-61. PubMed ID: 7237150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.