These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6733884)

  • 1. Advance prediction of transthoracic impedance in human defibrillation and cardioversion: importance of impedance in determining the success of low-energy shocks.
    Kerber RE; Kouba C; Martins J; Kelly K; Low R; Hoyt R; Ferguson D; Bailey L; Bennett P; Charbonnier F
    Circulation; 1984 Aug; 70(2):303-8. PubMed ID: 6733884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment.
    Kerber RE; Martins JB; Kienzle MG; Constantin L; Olshansky B; Hopson R; Charbonnier F
    Circulation; 1988 May; 77(5):1038-46. PubMed ID: 3359585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated impedance-based energy adjustment for defibrillation: experimental studies.
    Kerber RE; McPherson D; Charbonnier F; Kieso R; Hite P
    Circulation; 1985 Jan; 71(1):136-40. PubMed ID: 3964715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of successful transthoracic defibrillation and outcome in ventricular fibrillation.
    Dalzell GW; Adgey AA
    Br Heart J; 1991 Jun; 65(6):311-6. PubMed ID: 2054239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors determining success and energy requirements for cardioversion of atrial fibrillation.
    Dalzell GW; Anderson J; Adgey AA
    Q J Med; 1990 Sep; 76(281):903-13. PubMed ID: 2236476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors determining success and energy requirements for cardioversion of atrial fibrillation: revised version.
    Dalzell GW; Anderson J; Adgey AA
    Q J Med; 1991 Jan; 78(285):85-95. PubMed ID: 1670068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediatric defibrillation: current flow is improved by using "adult" electrode paddles.
    Atkins DL; Kerber RE
    Pediatrics; 1994 Jul; 94(1):90-3. PubMed ID: 8008545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a new defibrillation pathway: tongue-epigastric/tongue-apex route. II. Impedance characteristics in human subjects.
    Kerber RE; Klein S; Kouba C; Aronson A
    J Am Coll Cardiol; 1984 Aug; 4(2):253-8. PubMed ID: 6736465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadriphasic waveforms are superior to triphasic waveforms for transthoracic defibrillation in a cardiac arrest swine model with high impedance.
    Zhang Y; Rhee B; Davies LR; Zimmerman MB; Snyder D; Jones JL; Kerber RE
    Resuscitation; 2006 Feb; 68(2):251-8. PubMed ID: 16325983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical therapy for cardiovascular emergencies.
    Ewy GA
    Circulation; 1986 Dec; 74(6 Pt 2):IV111-6. PubMed ID: 3536157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current-based transthoracic defibrillation.
    Kerber RE; Kieso RA; Kienzle MG; Olshansky B; Waldo AL; Carlson MD; Wilber DJ; Aschoff AM; Birger S; Charbonnier F
    Am J Cardiol; 1996 Nov; 78(10):1113-8. PubMed ID: 8914873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial experience with a microprocessor controlled current based defibrillator.
    Dalzell GW; Cunningham SR; Anderson J; Adgey AA
    Br Heart J; 1989 Jun; 61(6):502-5. PubMed ID: 2757862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transthoracic cardioversion of atrial fibrillation: comparison of rectilinear biphasic versus damped sine wave monophasic shocks.
    Mittal S; Ayati S; Stein KM; Schwartzman D; Cavlovich D; Tchou PJ; Markowitz SM; Slotwiner DJ; Scheiner MA; Lerman BB
    Circulation; 2000 Mar; 101(11):1282-7. PubMed ID: 10725288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode pad size, transthoracic impedance and success of external ventricular defibrillation.
    Dalzell GW; Cunningham SR; Anderson J; Adgey AA
    Am J Cardiol; 1989 Oct; 64(12):741-4. PubMed ID: 2801525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of delivered energy on defibrillation shock impedance.
    Weiss DN; Shorofsky SR; Peters RW; Gold MR
    J Interv Card Electrophysiol; 1998 Sep; 2(3):273-7. PubMed ID: 9870022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transthoracic defibrillation: importance of avoiding electrode placement directly on the female breast.
    Pagan-Carlo LA; Spencer KT; Robertson CE; Dengler A; Birkett C; Kerber RE
    J Am Coll Cardiol; 1996 Feb; 27(2):449-52. PubMed ID: 8557919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of low energy test shocks for estimation of cardiac and electrode impedance with implantable defibrillators.
    Leitch JW; Yee R; Klein GJ; Jones DL
    Pacing Clin Electrophysiol; 1990 Apr; 13(4):410-6. PubMed ID: 1692124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transthoracic electrical impedance during external defibrillation: comparison of measured and modelled waveforms.
    Al Hatib F; Trendafilova E; Daskalov I
    Physiol Meas; 2000 Feb; 21(1):145-53. PubMed ID: 10720010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transthoracic defibrillation: effect of sternotomy on chest impedance.
    Kerber RE; Vance S; Schomer SJ; Mariano DJ; Charbonnier F
    J Am Coll Cardiol; 1992 Jul; 20(1):94-7. PubMed ID: 1607545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defibrillation probability and impedance change between shocks during resuscitation from out-of-hospital cardiac arrest.
    Walker RG; Koster RW; Sun C; Moffat G; Barger J; Dodson PP; Chapman FW
    Resuscitation; 2009 Jul; 80(7):773-7. PubMed ID: 19423211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.