These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6734779)

  • 1. Alterations in cerebellar glutamic acid decarboxylase (GAD) activity in a genetic model of torsion dystonia (rat).
    Oltmans GA; Beales M; Lorden JF; Gordon JH
    Exp Neurol; 1984 Jul; 85(1):216-22. PubMed ID: 6734779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamic acid decarboxylase activity in micropunches of the deep cerebellar nuclei of the genetically dystonic (dt) rat.
    Oltmans GA; Beales M; Lorden JF
    Brain Res; 1986 Oct; 385(1):148-51. PubMed ID: 3768712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential expression of glutamate decarboxylase messenger RNA in cerebellar Purkinje cells and deep cerebellar nuclei of the genetically dystonic rat.
    Naudon L; Delfs JM; Clavel N; Lorden JF; Chesselet MF
    Neuroscience; 1998 Feb; 82(4):1087-94. PubMed ID: 9466432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuropharmacological correlates of the motor syndrome of the genetically dystonic (dt) rat.
    Lorden JF; Oltmans GA; Stratton S; Mays LE
    Adv Neurol; 1988; 50():277-97. PubMed ID: 2840806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal sequence of motor disturbances and increased cerebellar glutamic acid decarboxylase activity following 3-acetylpyridine lesions in adult rats.
    Sukin D; Skedros DG; Beales M; Stratton SE; Lorden JF; Oltmans GA
    Brain Res; 1987 Nov; 426(1):82-92. PubMed ID: 3690321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional alterations in neuronal activity in dystonic hamster brain determined by quantitative cytochrome oxidase histochemistry.
    Nobrega JN; Richter A; Jiwa D; Raymond R; Löscher W
    Neuroscience; 1998 Apr; 83(4):1215-23. PubMed ID: 9502259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA levels and GAD immunoreactivity in the deep cerebellar nuclei of rats with altered olivo-cerebellar function.
    Lutes J; Lorden JF; Davis BJ; Oltmans GA
    Brain Res Bull; 1992; 29(3-4):329-36. PubMed ID: 1393605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal monosodium glutamate treatment modifies glutamic acid decarboxylase activity during rat brain postnatal development.
    Ureña-Guerrero ME; López-Pérez SJ; Beas-Zárate C
    Neurochem Int; 2003 Mar; 42(4):269-76. PubMed ID: 12470699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesions of the inferior olive increase glutamic acid decarboxylase activity in the deep cerebellar nuclei of the rat.
    Oltmans GA; Lorden JF; Beales M
    Brain Res; 1985 Nov; 347(1):154-8. PubMed ID: 4052796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of glutamic acid decarboxylase messenger RNA-containing nerve cell populations of the male rat brain.
    Ferraguti F; Zoli M; Aronsson M; Agnati LF; Goldstein M; Filer D; Fuxe K
    J Chem Neuroanat; 1990; 3(5):377-96. PubMed ID: 2222893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased glutamic acid decarboxylase (GAD) mRNA and GAD activity in cerebellar Purkinje cells following lesion-induced increases in cell firing.
    Litwak J; Mercugliano M; Chesselet MF; Oltmans GA
    Neurosci Lett; 1990 Aug; 116(1-2):179-83. PubMed ID: 2259446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of phencyclidine on glutamic acid decarboxylase activity in several regions of the rat brain.
    Peat MA; Gibb JW
    Neurosci Lett; 1983 Mar; 35(3):301-6. PubMed ID: 6843905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diurnal variations of glutamic acid decarboxylase activity in some discrete nuclei of rat brain.
    Kawahara R; Hazama H; Kamase H; Takeshita H; Kunimoto N; Kayano M
    Folia Psychiatr Neurol Jpn; 1980; 34(4):473-9. PubMed ID: 7196368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate decarboxylase distribution in discrete motor nuclei in the cat brain.
    Nieoullon A; Dusticier N
    J Neurochem; 1981 Jul; 37(1):202-9. PubMed ID: 7252505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of discrete kainic acid-induced lesions of corpus caudatus and globus pallidus on glutamic acid decarboxylase of rat substantia nigra.
    Di Chiara G; Morelli M; Porceddu ML; Mulas M; Del Fiacco M
    Brain Res; 1980 May; 189(1):193-208. PubMed ID: 7363085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-mortem degradation of brain glutamate decarboxylase.
    Martin SB; Waniewski RA; Battaglioli G; Martin DL
    Neurochem Int; 2003 Jun; 42(7):549-54. PubMed ID: 12590937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamic acid decarboxylase (GAD) activity in the rat substantia nigra after discrete bilateral kainic acid-induced lesions of the caudate-putamen and globus pallidus: correlation with locomotor activity.
    Al-Shabibi UM; Davies JA
    Brain Res; 1981 Jun; 213(2):460-6. PubMed ID: 7248771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat.
    LeDoux MS; Hurst DC; Lorden JF
    Neuroscience; 1998 Sep; 86(2):533-45. PubMed ID: 9881867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamic acid decarboxylase activity in discrete hypothalamic nuclei during the development of rats.
    Sternberg H; Segall PE; Bellport V; Timiras PS
    Brain Res; 1987 Aug; 431(2):316-7. PubMed ID: 3620994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution and origin of glutamate decarboxylase and choline acetyltransferase in ventral pallidum and other basal forebrain regions.
    Walaas I; Fonnum F
    Brain Res; 1979 Nov; 177(2):325-36. PubMed ID: 497834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.