These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 6736022)
1. Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity. Brunden KR; Uratani Y; Cramer WA J Biol Chem; 1984 Jun; 259(12):7682-7. PubMed ID: 6736022 [TBL] [Abstract][Full Text] [Related]
2. Secondary structure of the pore-forming colicin A and its C-terminal fragment. Experimental fact and structure prediction. Pattus F; Heitz F; Martinez C; Provencher SW; Lazdunski C Eur J Biochem; 1985 Nov; 152(3):681-9. PubMed ID: 4054129 [TBL] [Abstract][Full Text] [Related]
3. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: relevance to the mechanism of action of colicins and certain toxins. Davidson VL; Brunden KR; Cramer WA Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1386-90. PubMed ID: 2579396 [TBL] [Abstract][Full Text] [Related]
4. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state. Merrill AR; Cohen FS; Cramer WA Biochemistry; 1990 Jun; 29(24):5829-36. PubMed ID: 2200517 [TBL] [Abstract][Full Text] [Related]
5. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. Dankert JR; Uratani Y; Grabau C; Cramer WA; Hermodson M J Biol Chem; 1982 Apr; 257(7):3857-63. PubMed ID: 7037787 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide. Bullock JO; Cohen FS; Dankert JR; Cramer WA J Biol Chem; 1983 Aug; 258(16):9908-12. PubMed ID: 6309789 [TBL] [Abstract][Full Text] [Related]
7. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
8. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468. Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503 [TBL] [Abstract][Full Text] [Related]
9. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1. Bishop LJ; Cohen FS; Davidson VL; Cramer WA J Membr Biol; 1986; 92(3):237-45. PubMed ID: 2431147 [TBL] [Abstract][Full Text] [Related]
10. Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity. Taylor RM; Zakharov SD; Bernard Heymann J; Girvin ME; Cramer WA Biochemistry; 2000 Oct; 39(40):12131-9. PubMed ID: 11015191 [TBL] [Abstract][Full Text] [Related]
11. A pH-induced increase in hydrophobicity as a possible step in the penetration of colicin E3 through bacterial membranes. Escuyer V; Boquet P; Perrin D; Montecucco C; Mock M J Biol Chem; 1986 Aug; 261(23):10891-8. PubMed ID: 3525556 [TBL] [Abstract][Full Text] [Related]
12. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide. Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708 [TBL] [Abstract][Full Text] [Related]
13. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1. Cleveland MV; Slatin S; Finkelstein A; Levinthal C Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3706-10. PubMed ID: 6304732 [TBL] [Abstract][Full Text] [Related]
14. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size. Davidson VL; Cramer WA; Bishop LJ; Brunden KR J Biol Chem; 1984 Jan; 259(1):594-600. PubMed ID: 6706954 [TBL] [Abstract][Full Text] [Related]
15. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies. Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207 [TBL] [Abstract][Full Text] [Related]
16. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state. Merrill AR; Palmer LR; Szabo AG Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465 [TBL] [Abstract][Full Text] [Related]
17. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer. Steer BA; Merrill AR Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742 [TBL] [Abstract][Full Text] [Related]
18. Structural stability and domain organization of colicin E1. Griko YV; Zakharov SD; Cramer WA J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734 [TBL] [Abstract][Full Text] [Related]
19. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
20. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I. Zhu HL; Atkinson D Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]