BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6736221)

  • 1. Identification of inner and outer cell proliferation centers during fetal tooth morphogenesis.
    Lehmann R; Slavkin HC
    J Craniofac Genet Dev Biol; 1984; 4(1):47-57. PubMed ID: 6736221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and function of FGFs-4, -8, and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis.
    Kettunen P; Thesleff I
    Dev Dyn; 1998 Mar; 211(3):256-68. PubMed ID: 9520113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the termination of cell proliferation and expression of heat-shock protein-25 in the rat developing tooth germ.
    Nakasone N; Yoshie H; Ohshima H
    Eur J Oral Sci; 2006 Aug; 114(4):302-9. PubMed ID: 16911101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis.
    Kettunen P; Laurikkala J; Itäranta P; Vainio S; Itoh N; Thesleff I
    Dev Dyn; 2000 Nov; 219(3):322-32. PubMed ID: 11066089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Movement of entire cell populations during renewal of the rat incisor as shown by radoioautography after labeling with 3H-thymidine. The concept of a continuously differentiating cross-sectional segment. (With an appendix on the development of the periodontal ligament).
    Smith CE; Warshawsky H
    Am J Anat; 1976 Feb; 145(2):225-59. PubMed ID: 1258806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine.
    Smith CE; Warshawsky H
    Anat Rec; 1975 Dec; 183(4):523-61. PubMed ID: 1200409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tooth-type specific expression of dHAND/Hand2: possible involvement in murine lower incisor morphogenesis.
    Abe M; Tamamura Y; Yamagishi H; Maeda T; Kato J; Tabata MJ; Srivastava D; Wakisaka S; Kurisu K
    Cell Tissue Res; 2002 Nov; 310(2):201-12. PubMed ID: 12397375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basal lamina persistence during epithelial-mesenchymal interactions in murine tooth development in vitro.
    Slavkin HC; Brownell AG; Bringas P; MacDougall M; Bessem C
    J Craniofac Genet Dev Biol; 1983; 3(4):387-407. PubMed ID: 6662909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of functional dentin incisors after a partial resection of the odontogenic organ of rat incisors.
    Merzel J; Novaes PD
    Arch Oral Biol; 2006 Oct; 51(10):825-35. PubMed ID: 16730636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars.
    Nakasone N; Yoshie H; Ohshima H
    Arch Oral Biol; 2006 May; 51(5):378-86. PubMed ID: 16259940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, gene regulation, and roles of Fisp12/CTGF in developing tooth germs.
    Shimo T; Wu C; Billings PC; Piddington R; Rosenbloom J; Pacifici M; Koyama E
    Dev Dyn; 2002 Jul; 224(3):267-78. PubMed ID: 12112457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution patterns of DNA template activity in the embryonic tooth organ: an acridine orange ultracytochemical study.
    Lehmann R
    J Biol Buccale; 1979 Mar; 7(1):37-48. PubMed ID: 285073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of human primary enamel organ epithelial cells in vitro.
    DenBesten PK; Machule D; Zhang Y; Yan Q; Li W
    Arch Oral Biol; 2005 Aug; 50(8):689-94. PubMed ID: 15958200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observations on continuously growing roots of the sloth and the K14-Eda transgenic mice indicate that epithelial stem cells can give rise to both the ameloblast and root epithelium cell lineage creating distinct tooth patterns.
    Tummers M; Thesleff I
    Evol Dev; 2008; 10(2):187-95. PubMed ID: 18315812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure of the epithelial-mesenchymal interface in the mouse tooth germ.
    Hurmerinta K; Thesleff I
    J Craniofac Genet Dev Biol; 1981; 1(2):191-202. PubMed ID: 7338550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history.
    Hu B; Nadiri A; Bopp-Kuchler S; Perrin-Schmitt F; Wang S; Lesot H
    Arch Oral Biol; 2005 Feb; 50(2):131-6. PubMed ID: 15721139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of human ameloblast-lineage cells in vitro.
    Yan Q; Zhang Y; Li W; DenBesten PK
    Eur J Oral Sci; 2006 May; 114 Suppl 1():154-8; discussion 164-5, 380-1. PubMed ID: 16674678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lectin binding patterns of odontogenic epithelium in the rat during various phases of molar tooth development.
    Dan M
    J Osaka Dent Univ; 1997 Dec; 31(1-2):39-46. PubMed ID: 9872086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LEF1 is a critical epithelial survival factor during tooth morphogenesis.
    Sasaki T; Ito Y; Xu X; Han J; Bringas P; Maeda T; Slavkin HC; Grosschedl R; Chai Y
    Dev Biol; 2005 Feb; 278(1):130-43. PubMed ID: 15649466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of BMP-7 on mouse tooth mesenchyme and chick mandibular mesenchyme.
    Wang YH; Rutherford B; Upholt WB; Mina M
    Dev Dyn; 1999 Dec; 216(4-5):320-35. PubMed ID: 10633853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.