These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6736302)

  • 41. Somatotopic and functional organization of the avian trigeminal ganglion: an HRP analysis in the hatchling chick.
    Noden DM
    J Comp Neurol; 1980 Apr; 190(3):405-28. PubMed ID: 6967074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Somatotopic organization and functional properties of mechanosensory neurons expressing sensorin-A mRNA in Aplysia californica.
    Walters ET; Bodnarova M; Billy AJ; Dulin MF; Díaz-Ríos M; Miller MW; Moroz LL
    J Comp Neurol; 2004 Mar; 471(2):219-40. PubMed ID: 14986314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ascending projections of the brain stem reticular formation in a nonmammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain.
    Ten Donkelaar HJ; De Boer-Van Huizen R
    J Comp Neurol; 1981 Aug; 200(4):501-28. PubMed ID: 7263959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-delta peripheral axons in the trigeminal ganglia of crotaline snakes.
    Liang YF; Terashima S
    J Comp Neurol; 1993 Feb; 328(1):88-102. PubMed ID: 8429128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Serotonin modulates axo-axonal coupling between neurons critical for learning in the leech.
    Moss BL; Fuller AD; Sahley CL; Burrell BD
    J Neurophysiol; 2005 Oct; 94(4):2575-89. PubMed ID: 15987763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organization of sensory pathways in the anterior tentacle of Helix pomatia L. A light microscopic study.
    Hernádi L
    Z Mikrosk Anat Forsch; 1982; 96(4):695-703. PubMed ID: 7180088
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex.
    Czeiger D; White EL
    J Comp Neurol; 1993 Apr; 330(4):502-13. PubMed ID: 8320340
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Convergence of autonomic and limbic connections in the insular cortex of the rat.
    Saper CB
    J Comp Neurol; 1982 Sep; 210(2):163-73. PubMed ID: 7130477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chick wing innervation. I. Time course of innervation and early differentiation of the peripheral nerve pattern.
    Hollyday M
    J Comp Neurol; 1995 Jun; 357(2):242-53. PubMed ID: 7665727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in the segmental pattern of sensory neuron projections in the chick hindlimb under conditions of altered cell adhesion molecule function.
    Honig MG; Rutishauser US
    Dev Biol; 1996 May; 175(2):325-37. PubMed ID: 8626036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuroanatomy of the visual afferents in the horseshoe crab (Limulus polyphemus).
    Chamberlain SC; Barlow RB
    J Comp Neurol; 1980 Jul; 192(2):387-400. PubMed ID: 7400403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Morphology of peripheral nerves, their sheaths, and their vascularization].
    Reina MA; López A; Villanueva MC; de Andrés JA; León GI
    Rev Esp Anestesiol Reanim; 2000 Dec; 47(10):464-75. PubMed ID: 11171467
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the ultrastructure of the enteric nerve ganglia.
    Gabella G
    Scand J Gastroenterol Suppl; 1982; 71():15-25. PubMed ID: 6951271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tract formation and axon fasciculation of molecularly distinct peripheral neuron subpopulations during leech embryogenesis.
    Johansen KM; Kopp DM; Jellies J; Johansen J
    Neuron; 1992 Mar; 8(3):559-72. PubMed ID: 1550678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of central axon terminals of putative stretch receptors in leeches.
    Fan RJ; Friesen WO
    J Comp Neurol; 2006 Jan; 494(2):290-302. PubMed ID: 16320239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Submicroscopic structure of peripheral nerves of the leech Hirudo medicinalis L].
    Golubev AI
    Arkh Anat Gistol Embriol; 1968 Feb; 54(2):38-45. PubMed ID: 5685462
    [No Abstract]   [Full Text] [Related]  

  • 57. Morphological evidence that regenerating axons can fuse with severed axon segments.
    Deriemer SA; Elliott EJ; Macagno ER; Muller KJ
    Brain Res; 1983 Aug; 272(1):157-61. PubMed ID: 6616192
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An identified cell is required for the formation of a major nerve during embryogenesis in the leech.
    Jellies J; Kristan WB
    J Neurobiol; 1988 Mar; 19(2):153-65. PubMed ID: 3351507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The caudal ganglion of the leech, with particular reference to homologues of segmental touch receptors.
    Rubin E
    J Neurobiol; 1978 Sep; 9(5):393-405. PubMed ID: 712367
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bonyfish lateral line efferent neurons identified by retrograde axonal transport of horseradish peroxidase (HRP).
    Claas B; Münz H
    Brain Res; 1980 Jul; 193(1):249-53. PubMed ID: 6155178
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.