BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 6736631)

  • 1. The ultrastructural organization of lamina VI of the spinal cord of the cat. Morphological characterization of the synaptic population.
    Torri-Tarelli L; Tredici G; Cavaletti G; Marmiroli P
    J Hirnforsch; 1984; 25(2):153-61. PubMed ID: 6736631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fine structure of the inferior colliculus in the cat. II. Synaptic organization.
    Paloff AM; Usunoff KG
    J Hirnforsch; 1992; 33(1):77-106. PubMed ID: 1447517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. II. Electron microscopic studies.
    Mihailoff GA; McArdle CB
    J Comp Neurol; 1981 Jan; 195(2):203-19. PubMed ID: 7251924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fine structure of the subthalamic nucleus in the cat. II. Synaptic organization. Comparisons with the synaptology and afferent connections of the pallidal complex and the substantia nigra.
    Romansky KV; Usunoff KG
    J Hirnforsch; 1987; 28(4):407-33. PubMed ID: 3655332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fine structure of laminae IV, V, and VI of the Macaque spinal cord.
    Ralston HJ
    J Comp Neurol; 1982 Dec; 212(4):425-34. PubMed ID: 7161419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative ultrastructural analysis of the periaqueductal gray in the rabbit.
    Meller ST; Dennis BJ
    Anat Rec; 1993 Jul; 236(3):573-85. PubMed ID: 8363062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1985 Feb; 232(2):229-40. PubMed ID: 3973092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of normal and degenerating glomerular terminals of dorsal root axons in the substantia gelatinosa of the rhesus monkey.
    Knyihar-Csillik E; Csillik B; Rakic P
    J Comp Neurol; 1982 Oct; 210(4):357-75. PubMed ID: 7142447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of synaptic boutons on motoneurons of rhesus monkey spinal cord after chronic deafferentation due to cerebral lesions.
    Inoue Y; Inoue K; Terashima T; Nishimura Y; Shimai K
    J Hirnforsch; 1984; 25(5):527-36. PubMed ID: 6501868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus.
    Okado N
    J Comp Neurol; 1980 Jun; 191(3):495-513. PubMed ID: 7410604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic organization of the medial acessory olivary nucleus of the cat.
    Bozhilova A; Ovtscharoff W
    J Hirnforsch; 1979; 20(1):19-28. PubMed ID: 225382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical localization of glycine in the lamprey spinal cord with reference to GABAergic and glutamatergic synapses: a light and electron microscopic study.
    Shupliakov O; Fagerstedt P; Ottersen OP; Storm-Mathiesen J; Grillner S; Brodin L
    Acta Biol Hung; 1996; 47(1-4):393-410. PubMed ID: 9124008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study.
    Norita M
    J Comp Neurol; 1980 Mar; 190(1):29-48. PubMed ID: 7381053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The different types of synapses in the thalamic nucleus ventralis anterior (VA) of Saimiri sciureus and their degeneration after pallidum coagulation.
    Nitecka L; Hassler R; Bialowas J; Wagner A
    J Hirnforsch; 1983; 24(2):149-64. PubMed ID: 6886386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and synaptic connections of slowly adapting periodontal afferent terminals in the trigeminal subnuclei principalis and oralis of the cat.
    Bae YC; Nakagawa S; Yoshida A; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1994 Oct; 348(1):121-32. PubMed ID: 7814681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative analysis of the laminar distribution of synaptic boutons in field CA3 of the rat hippocampus.
    Matsuda S; Kobayashi Y; Ishizuka N
    Neurosci Res; 2004 Jun; 49(2):241-52. PubMed ID: 15140566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the synaptology of spinal motoneurons in zebrafish following spinal cord transection.
    van Raamsdonk W; Smit-Onel MJ; Maslam S; Velzing E; de Heus R
    Acta Histochem; 1998 Apr; 100(2):133-48. PubMed ID: 9587625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron microscopy of the subthalamic nucleus in the baboon. I. Synaptic organization of the subthalamic nucleus in the baboon.
    Hassler R; Usunoff KG; Romansky KV; Christ JF
    J Hirnforsch; 1982; 23(6):597-611. PubMed ID: 7169521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural organization of lamina VI of the spinal cord of the cat.
    Tredici G; Torri Tarelli LT; Cavaletti G; Marmiroli P
    Prog Neurobiol; 1985; 24(4):293-331. PubMed ID: 4081017
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.