BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 6736650)

  • 1. Modification of cellular protein sulfhydryl groups by activated soluble immune response suppressor.
    Aune TM
    J Immunol; 1984 Aug; 133(2):899-906. PubMed ID: 6736650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soluble immune response suppressor (SIRS) inhibits microtubule function in vivo and microtubule assembly in vitro.
    Irons RD; Pfeifer RW; Aune TM; Pierce CW
    J Immunol; 1984 Oct; 133(4):2032-6. PubMed ID: 6381593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of the SIRS suppressor pathway.
    Aune TM; Pierce CW
    Prog Clin Biol Res; 1983; 132B():335-44. PubMed ID: 6634760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of soluble immune response suppressor activity by growth factors.
    Aune TM
    Proc Natl Acad Sci U S A; 1985 Sep; 82(18):6260-4. PubMed ID: 3875857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of immune responses to sheep erythrocytes by the lymphokine soluble immune response suppressor (SIRS) in vivo.
    Schnaper HW; Aune TM
    J Immunol; 1986 Aug; 137(3):863-7. PubMed ID: 3088113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of action of macrophage-derived suppressor factor produced by soluble immune response suppressor-treated macrophages.
    Aune TM; Pierce CW
    J Immunol; 1981 Jul; 127(1):368-72. PubMed ID: 7016995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor promoter benzoyl peroxide induces sulfhydryl oxidation in protein kinase C: its reversibility is related to the cellular resistance to peroxide-induced cytotoxicity.
    Gopalakrishna R; Gundimeda U; Anderson WB; Colburn NH; Slaga TJ
    Arch Biochem Biophys; 1999 Mar; 363(2):246-58. PubMed ID: 10068446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of soluble immune response suppressor and macrophage-derived suppressor factor.
    Aune TM; Pierce CW
    J Immunol Methods; 1982 Aug; 53(1):1-14. PubMed ID: 6752280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role and function of antigen nonspecific suppressor factors.
    Aune TM
    Crit Rev Immunol; 1987; 7(2):93-130. PubMed ID: 2438085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and initial characterization of concanavalin A- and interferon-induced human suppressor factors: evidence for a human equivalent of murine soluble immune response suppressor (SIRS).
    Schnaper HW; Pierce CW; Aune TM
    J Immunol; 1984 May; 132(5):2429-35. PubMed ID: 6232318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites.
    Quesada AR; Byrnes RW; Krezoski SO; Petering DH
    Arch Biochem Biophys; 1996 Oct; 334(2):241-50. PubMed ID: 8900398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of soluble immune response suppressor to macrophage-derived suppressor factor by peroxide.
    Aune TM; Pierce CW
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):5099-103. PubMed ID: 6975476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo analysis of a superantigen-induced T cell suppressor factor.
    Hu HL; Cornwell WD; Rogers TJ; Lin YS
    Cell Immunol; 1996 Feb; 167(2):285-92. PubMed ID: 8603438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor growth inhibitory and natural suppressor activities of murine bone marrow cells: a comparative study.
    Seledtsov VI; Taraban VY; Seledtsova GV; Samarin DM; Avdeev IV; Senyukov VV; Kozlov VA
    Cell Immunol; 1997 Nov; 182(1):12-9. PubMed ID: 9427805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ELISA for the detection of the lymphokine soluble immune response suppressor.
    Aune TM
    J Immunol Methods; 1985 Nov; 84(1-2):33-44. PubMed ID: 2415638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and initial characterization of a nonspecific suppressor factor (macrophage-SF) produced by soluble immune response suppressor (SIRS)-treated macrophages.
    Aune TM; Pierce CW
    J Immunol; 1981 Nov; 127(5):1828-33. PubMed ID: 7197699
    [No Abstract]   [Full Text] [Related]  

  • 17. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione.
    Chatterjee S; de Lamirande E; Gagnon C
    Mol Reprod Dev; 2001 Dec; 60(4):498-506. PubMed ID: 11746961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state.
    Iwata S; Hori T; Sato N; Hirota K; Sasada T; Mitsui A; Hirakawa T; Yodoi J
    J Immunol; 1997 Apr; 158(7):3108-17. PubMed ID: 9120263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fas ligand induction in human NK cells is regulated by redox through a calcineurin-nuclear factors of activated T cell-dependent pathway.
    Furuke K; Shiraishi M; Mostowski HS; Bloom ET
    J Immunol; 1999 Feb; 162(4):1988-93. PubMed ID: 9973469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.